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MRCET VISION 
 
 

• To become a model institution in the fields of Engineering, Technology and 

Management. 

 

• To have a perfect synchronization of the ideologies of MRCET with challenging 

demands of International Pioneering Organizations. 

MRCET MISSION 

To establish a pedestal for the integral innovation, team spirit, originality and 

competence in the students, expose them to face the global challenges and become 

pioneers of Indian vision of modern society. 

MRCET QUALITY POLICY. 

• To pursue continual improvement of teaching learning process of Undergraduate and 

Post Graduate programs in Engineering & Management vigorously. 
 

• To provide state of art infrastructure and expertise to impart the quality education. 
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PROGRAM OUTCOMES 
(PO’s) 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 
fundamentals, and an engineering specialization to the solution of complex engineering 
problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 
engineering problems reaching substantiated conclusions using first principles of 
mathematics, natural sciences, and engineering sciences. 

3. Design / development of solutions: Design solutions for complex engineering problems 
and design system components or processes that meet the specified needs with 
appropriate consideration for the public health and safety, and the cultural, societal, 
and environmental considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and 
research methods including design of experiments, analysis and interpretation of data, 
and synthesis of the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 
modern engineering and IT tools including prediction and modeling to complex 
engineering activities with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to 
assess societal, health, safety, legal and cultural issues and the consequent 
responsibilities relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering 
solutions in societal and environmental contexts, and demonstrate the knowledge of, 
and need for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities 
and norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or 
leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 
engineering community and with society at large, such as, being able to comprehend 
and write effective reports and design documentation, make effective presentations, 
and give and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 
engineering and management principles and apply these to one’s own work, as a 
member and leader in a team, to manage projects and in multi disciplinary 
environments. 

12. Life- long learning: Recognize the need for, and have the preparation and ability to 
engage in independent and life-long learning in the broadest context of technological 
change. 
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DEPARTMENT OF AERONAUTICAL ENGINEERING 

VISION 

 
Department of Aeronautical Engineering aims to be indispensable source in Aeronautical 
Engineering which has a zeal to provide the value driven platform for the students to 

acquire knowledge and empower themselves to shoulder higher responsibility in building 

a strong nation. 
 

MISSION 

 
The primary mission of the department is to promote engineering education and research. 

To strive consistently to provide quality education, keeping in pace with time and 
technology. Department passions to integrate the intellectual, spiritual, ethical and social 

development of the students for shaping them into dynamic engineers. 
 
 

QUALITY POLICY STATEMENT 

 
Impart up-to-date knowledge to the students in Aeronautical area to make them quality 

engineers. Make the students experience the applications on quality equipment and tools. 
Provide systems, resources and training opportunities to achieve continuous 

improvement. Maintain global standards in education, training and services. 
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PROGRAM EDUCATIONAL OBJECTIVES – Aeronautical Engineering 
 

1. PEO1 (PROFESSIONALISM & CITIZENSHIP): To create and sustain a community of 
learning in which students acquire knowledge and learn to apply it professionally with 
due consideration for ethical, ecological and economic issues. 

2. PEO2 (TECHNICAL ACCOMPLISHMENTS): To provide knowledge based services to satisfy 
the needs of society and the industry by providing hands on experience in various 
technologies in core field. 

3. PEO3 (INVENTION, INNOVATION AND CREATIVITY): To make the students to design, 
experiment, analyze, and interpret in the core field with the help of other multi 
disciplinary concepts wherever applicable. 

4. PEO4 (PROFESSIONAL DEVELOPMENT): To educate the students to disseminate 
research findings with good soft skills and become a successful entrepreneur. 

5. PEO5 (HUMAN RESOURCE DEVELOPMENT): To graduate the students in building 
national capabilities in technology, education and research 

 
 
 

PROGRAM SPECIFIC OUTCOMES – Aeronautical Engineering 
 

1. To mould students to become a professional with all necessary skills, personality and 
sound knowledge in basic and advance technological areas. 

2. To promote understanding of concepts and develop ability in design manufacture and 
maintenance of aircraft, aerospace vehicles and associated equipment and develop 
application capability of the concepts sciences to engineering design and processes. 

3. Understanding the current scenario in the field of aeronautics and acquire ability to 
apply knowledge of engineering, science and mathematics to design and conduct 
experiments in the field of Aeronautical Engineering. 

4. To develop leadership skills in our students necessary to shape the social, intellectual, 
business and technical worlds. 
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 
III Year B.Tech ANE-I Sem  L T/P/D C 

2  1/-/-  3 
 

(R20A2134) COMPRESSIBLE FLOW AERODYNAMICS  
 

Objectives: 

 Study the basic governing equations of compressible flows and its parameters. 

 Study the effects of Shock and Expansion waves on aerodynamic characteristics. 

 Learn about the experimental methods to study about compressible flows. 

Tables: Isentropic, Normal Shock, Oblique Shock, Prandtl Meyer function. 

UNIT-I ONE DIMENSIONAL COMPRESSIBLE FLOWS 

Review of Thermodynamics. Definition of Compressibility, Stagnation conditions, Speed of sound, Mach number, 
shock waves. One dimensional flow governing equations. Alternative forms of Energy equations, Normal shock 
relations with numerical. 

 
UNIT-II OBLIQUE SHOCK AND EXPANSION WAVES 
Oblique shock waves. Supersonic flow over a wedge Θ - β - M relations strong and weak shock solutions, regular 
reflection from a solid boundary. Expansion waves, Prandtl – Meyer Expansion. Shock Expansion theory. 

 

UNIT-III 
SUBSONIC COMPRESSIBLE FLOW OVER AIRFOIL 
Introduction - Velocity potential equation –small perturbation equation - Prandtl-Glauert compressibility 
corrections - Critical Mach number with numericals - Drag divergence Mach number - Area rule - Supercritical 
airfoil. 

 
UNIT – IV 
LINEARIZED SUPERSONIC FLOWS AND HYPERSONIC FLOWS 
Linearized supersonic pressure coefficient, application to airfoils, lift and drag for flat plate, comparision with shock 
expansion theory. 
Qualitative aspects of hypersonic flows, Newtonian theory, modified Newtonian theory, lift and drag. 

 

UNIT- V 
FLOW THROUGH NOZZLES AND VARIABLE AREA DUCTS 
Quasi one dimensional flow, Area-velocity relation, Isentropic flow through Convergent – Divergent nozzles. 
Choked flow conditions. Under and Over expansion conditions. Flow through diffusers – wave reflections from a 
free boundary. Application to supersonic wind tunnel. 

 
 

Text Books: 

1. Anderson, J .D., Fundamental of Aerodynamics, Mc Graw-Hill International third edition Singapore- 

2001. 

 
Reference Books: 
1. Radhakrishnan, E, E., Gas Dynamics, Prentice Hall of India, 1995. 
2. Anderson, J .D., Modern Compressible Flow with Historical Perspective, Mc Graw-Hill International third edition 
Singapore-2004. 

 

Outcomes: 

 Understand the compressible flow parameters shock and expansion wave effecting flow 
behavior. 
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 Able to design nozzle, diffuser and variable area ducts to obtain required aerodynamic outputs. 

 Able to understand hypersonic flows. 
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MALLA REDDY COLLEGE OF ENGINEERING ANDTECHNOLOGY 

(UGC AUTONOMOUS) 

III B.TECH I SEMESTER – AERONAUTICAL ENGINEERING 

HIGH SPEED AERODYNAMICS - II (R15) 

MODEL PAPER – I 

MAXIMUM MARKS: 75 
PART A Max Marks: 25 

i. All questions in this section are compulsory 

ii. Answer in TWO to FOUR sentences. 

 
1. Define compressible and incompressible flows. (2 M) 

2. Using a neat sketch show the shock pattern in supersonic flow regime and state the changes in 

the flow after a shock wave. (3 M) 

3. Define one – dimensional flow and quasi one – dimensional flows. Give suitable examples for 

each. (3 M) 

4. For a calorically perfect gas prove that the square of mach number is proportional to ratio of 

kinetic and internal energy. (2 M) 

5. Using necessary assumptions prove that the tangential component of flow velocity is preserved 

across an oblique shock wave. (3M) 

6. Using neat sketch, define Mach reflection. (2 M) 

7. Define the terms choking, over expanded, under expanded nozzles. (2 M) 

8. Give the relation between incompressible pressure/force coefficient and compressible 

pressure/force coefficients in a linearised subsonic flow. (3 M) 

9. Formulate finite difference method. (2 M) 

10. Define truncation error and round – off error. (3 M) 
 

PART B  Max Marks: 50 

i. 

ii. 

Answer only one question among the two questions in choice. 

Each question answer (irrespective of the bits) carries 10M. 

 

 
11.  A pressure vessel has a volume of 10 m3 is used to store a high pressure air for operating a 

supersonic wind tunnel. If the air pressure and temperature inside the vessel are 20 atm and 

300 K respectively, calculate 

a. Mass of the air stored inside the vessel 

b. Total energy of the gas stored inside the vessel 

c. If the gas in the vessel is heated, the temperature rises to 600 K calculate the change in 

entropy of the air inside the vessel. 

OR 

12.  a. State second law of thermodynamics and derive the relations for calculating the change in 

entropy. 

b. Derive the isentropic flow relations. 
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In either, explain the nomenclature used clearly. 

 
13. Starting from the steady flow one dimensional energy equation derive the various alternative 

forms of energy equations. Explain all the symbols used clearly. 

OR 

14. For the flow across a normal shock 

a. Prove that a*2 = u1u2 (Prandtl’s relation) 

b. The Mach number behind a normal shock is always subsonic. 

c. The total temperature across a normal shock wave is constant 

 
15. Making necessary assumptions/using required conditions derive the relation between flow 

deflection angle, shock angle and upstream Mach number (θ-β-M) 

OR 

16. a. Derive the governing equation for Prandtl – Meyer expansion flow. 

b. Consider the flow past an expansion corner of angle 30o. The upstream Mach number, pressure and 

temperature are given by 2, 3 atm and 400 K respectively. Calculate the downstream Mach number, 

pressure, temperature, total temperature and total pressure. 

 
17.  Consider a flat plate at with chord length c at an angle of attack α to a supersonic free stream 

mach number M∞. Let L and D be lift and drag per unit span S is plan-form area of the plate 

per unit span, S = c(1). Using linearised theory, derive the following expressions for lift and 

drag coefficients. 
4𝛼 4𝛼2 

𝐶𝐿 =    ; 𝐶𝐷 =    
√𝑀2 − 1 

OR 

√𝑀2 − 1 

18.  Consider a rocket engine burning Hydrogen and oxygen. The combustion chamber pressure 

and temperature are 25 atm and 3571 K, respectively. The molecular weight of the chemically 

reacting gas in the combustion chamber is 16. The pressure at the exit of the convergent – 

divergent rocket nozzle is 1.174 x 102 atm. The throat area is 0.4 m2. Assuming a calorically 

perfect gas, calculate a) the exit Mach number , b) the exit velocity , c) the mass flow through 

the nozzle , and d) the area at the exit 

 
19. a. Explain about similarities of flow to be satisfied for Model testing. 

b. Illustrate the flow over a delta wing in supersonic flow. 

OR 

20. Write a short note on Hotwire anemometer. 
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MALLA REDDY COLLEGE OF ENGINEERING ANDTECHNOLOGY 

(UGC AUTONOMOUS) 

III B.TECH I SEMESTER – AERONAUTICAL ENGINEERING 

HIGH SPEED AERODYNAMICS - II (R15) 

MODEL PAPER – II 

MAXIMUM MARKS: 75 
PART A Max Marks: 25 

i. All questions in this section are compulsory 

ii. Answer in TWO to FOUR sentences. 

 
1. State first and second law of Thermodynamics. Define entropy, internal energy and enthalpy. 

(3M) 

2. Calculate the isothermal compressibility of air at a pressure of 0.5 atm. (2 M) 

3. Define characteristic speed of sound and stagnation speed of sound. (3 M) 

4. Give the relations between characteristic properties and stagnation properties of a flow.(2 M) 

5. Define shock strength and classify strong and weak shocks. (2 M) 

6. State the advantages of graphical representation of the solution of a flow problem. (3 M) 

7. Using neat schematic sketch, explain the application of nozzles. (3 M) 

8. Define critical Mach number and drag – divergence Mach number. (2 M) 

9. Write about advantages of delta wing. (2 M) 

10. Sketch the surface stream lines on a cone at an AoA. (3 M) 
 

PART B Max Marks: 50 

i. Answer only one question among the two questions in choice. 

ii. Each question answer (irrespective of the bits) carries 10M. 

 
11. a. Define speed of sound. Derive the expressions for speed of sound I terms of pressure, density 

and temperature. (5 M) 

b. Define thermally perfect and calorically perfect gases. Give the equation of state for 

calorically and thermally perfect gases. (5 M) 

OR 

12. a. Air flows through a duct. The pressure and temperature at station 1 are 0.7 atm and 300C, 

respectively. At a second station, the pressure is 0.5 atm. Calculate the temperature and density 

at the second station. Assume the flow to be isentropic. 

b. State the limitations of air as a perfect gas. 

c. Air at 300C is compressed isentropically to occupy a volume which is 1/30 of its initial 

volume. Assuming air as an ideal gas, determine the final temperature. 

 
13. Using energy equation, derive the relation between static properties and stagnation properties 

of a flow making necessary assumptions. 

OR 
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14. a. Derive the relation between total pressures across normal shock waves. Explain all the 

symbols used clearly. (5 M) 

b. A re-entry vehicle is at an altitude of 15,000 m and has a velocity of 1850 m/s. a bow shock 

wave envelops the vehicle. Neglecting disassociation, determine the static and stagnation 

pressure just behind the shock wave on the vehicles center line where the shock is assumed to 

be normal shock. Assume that air behaves as perfect gas with γ = 1.4 and R = 287 J/kg - K. (5 

M) 

 
15. A uniform supersonic stream with M1 = 3.0, p1 = 1 atm and T1 = 288 K encounters a 

compression corner which deflects the flow stream by an angle of 200C. Calculate the shock 

wave angle and p2, T2,, M2, po2, T02 behind the shock wave. All the symbols used are standard. 

Comment on the result if the deflection angle is increased keeping Mach number constant and 

the Mach number is increased with deflection angle constant, while the remaining parameters 

are the same. 

OR 

16. A flat plate is kept at 15o angle of attack to a supersonic flow at Mach number 2.4. Solve the 

flow field around the plate and determine the inclination of slipstream direction using shock 

expansion theory. 

 
17. a) Define linearization. Obtain an expression for linearized pressure coefficient. 

b) Obtain an expression for pressure coefficient for a linearized subsonic flow over a two 

dimensional profile.( Prandtl-Glauert rule). 

c) The low-speed lift coefficient for an NACA 2412 airfoil at an angle of attack of 40 is 0.65. 

Using the Prandtl-Glauert rule, calculate the lift coefficient for M∞ = 0.7. 

OR 

18. a) What is diffuser? Sketch a nozzle with conventional supersonic diffuser 

b) A supersonic wind tunnel is designed is designed to produce flow at Mach 2.4. at standard 

atmospheric conditions. Calculate (i) the exit to throat area ratio of the nozzle (ii) Reservoir 

pressure and temperature. 

 
19. Describe briefly about components of wind tunnel and flow measurement devices. 

OR 

20. Write a short note on Laser Doppler anemometer. 
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MALLA REDDY COLLEGE OF ENGINEERING ANDTECHNOLOGY 

(UGC AUTONOMOUS) 

III B.TECH I SEMESTER – AERONAUTICAL ENGINEERING 

HIGH SPEED AERODYNAMICS - II (R15) 

MODEL PAPER – III 

MAXIMUM MARKS: 75 
PART A Max Marks: 25 

i. All questions in this section are compulsory 

ii. Answer in TWO to FOUR sentences. 

 
1. Define isentropic flow. State the relation between flow properties in an isentropic flow. (2M) 

2. At the nose of the missile in flight, the pressure and temperature are 5.6 atm and 8500C, 

respectively. Calculate the density and specific volume. (3 M) 

3. What are the governing equations for steady one – dimensional flow? (2 M) 

4. For a flow through a variable area duct, give the relation between Area and velocity of the 

flow. What are the assumptions made in deriving this equation (3 M) 

5. Focus on the formation of three – dimensional shock waves. (2 M) 

6. State the difference between flow over wedges and cones. (3 M) 

7. Give the governing equations for quasi 1- D flow. (2 M) 

8. Give the three echelons of transonic inviscid flow theory. (3 M) 

9. What is kinematic similarity of flow. (2 M) 

10. What types of experiments are carried out by suing wind tunnel? (3 M) 
 

PART B  Max Marks: 50 

i. 

ii. 

Answer only one question among the two questions in choice. 

Each question answer (irrespective of the bits) carries 10M. 

 

 
11. Air flows isentropically through a nozzle. If the velocity and the temperature at the exit of the 

nozzle are 390 m/s and 28oC, respectively, determine the Mach number and Stagnation 

temperature at the exit. What will be the Mach number just upstream of a station where the 

temperature is 92.5oC. 

OR 

12. Derive the normal relations for a perfect gas. Make necessary assumptions and explain the 

nomenclature. 

13. Consider a supersonic flow at Mach 2.8 with a static pressure and temperature of 1 atm and 

5190 R, respectively. The flow passes over a compression corner with a deflection angle of 

160. The oblique shock generated at the corner propagates into the flow, and is incident on a 

horizontal wall. Calculate the angle Φ made by the reflected shock wave with respect to the 

wall, and the Mach number, pressure and temperature behind the reflected shock. Assume that 

the flow is parallel to the horizontal after moving across the reflected shock. 
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OR 

14. a. Write about shock polar and pressure deflection diagrams. 

b. Explain about prandtl-meyer expansion waves. 

 
15. a) Define Area rule and its importance in designing supersonic aircraft. 

b) Define critical Mach number. Obtain an expression for pressure coefficient at critical Mach 

number. 
 

OR 

16. a) Derive the linearised supersonic flow governing equation. 

b) At α = 00, the minimum pressure coefficient for an NACA 0009 airfoil in low-speed flow is 

-0.25. Calculate the critical Mach number for this airfoil using Prandtl-Glauert rule and 

Karman-Tsien rule. 

17. Explain about the method of characteristics for supersonic wind tunnel design. 

OR 

18. Explain about Quasi one dimensional flow and the area mach relation with over and under 

expanded flows. 

19. Write a short note on Blow down and indraft tunnel layouts and their design features. 

OR 

20. Write a short note on advantages and disadvantages of wind tunnel. 
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MALLA REDDY COLLEGE OF ENGINEERING ANDTECHNOLOGY 

(UGC AUTONOMOUS) 

III B.TECH I SEMESTER – AERONAUTICAL ENGINEERING 

HIGH SPEED AERODYNAMICS - II (R15) 

MODEL PAPER – IV 

MAXIMUM MARKS: 75 
PART A Max Marks: 25 

i. All questions in this section are compulsory 

ii. Answer in TWO to FOUR sentences. 

 
1. Define stagnation conditions and characteristic conditions. (2M) 

2. Give the 3 basic governing equations of fluid flow . (3 M) 

3. Give the laplace equation in terms of speed of sound. (2 M) 

4. Show that the mass flow rate across a stream tube in compressible flow field is inversely 

proportional to its sectional area. (3 M) 

5. Consider a supersonic flow at Mach 2.8 over a compression corner with a deflection angle of 

150. If the deflection angle is doubled, what is the increase in shock strength? Is it also 

doubled? Comment. (2 M) 

6. Give Prandtl – Meyer function and its significance. (3 M) 

7. Define linearization. Give the small perturbation equation. (2 M) 

8. Give the expression for Cpcr and necessary deductions. (3 M) 

9. Define region of influence and domain of independence. (2 M) 

10. Define dynamic similarity of flows. (3 M) 
 

PART B Max Marks: 50 

i. Answer only one question among the two questions in choice. 

ii. Each question answer (irrespective of the bits) carries 10M. 

 
11. Define Mach number and its importance. Using neat sketches, explain the flow pattern in 

various flow regimes. 

OR 

 
12. a. At a given point in the high speed flow over the airplane wing, the local Mach number, 

pressure and Temperature are 0.7, 0.2 atm and 250 K respectively. Calculate the values of po, 

To, p
*, T*, a* at this point. The symbols used are according to the standard convention. (5M) 

b. Consider a normal shock wave in the flow. The upstream conditions are given by M1=3, p1 

= 1 atm and ρ1 = 1.23 kg/m3. Calculate the downstream values p2, T2, M2, u2, po2, To2. The 

symbols used are according to the standard convention. (5M) 

13. Using neat sketches, explain the mathematical/graphical procedures for solving the flow 

problem 

a. When the shocks of opposite families intersect 
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b. When the shocks of same family intersect 

OR 

14. Consider an infinitely thin flat plate at an angle of attack of 200 in a Mach 3 free – stream. 

Calculate the magnitude of flow direction angle φ downstream the trailing edge. 

15. Derive the linearized pressure coefficient for supersonic flows. 

OR 

16. A flat plate is kept at 15o angle of attack to a supersonic flow at Mach number 2.4. Solve the 

flow field around the plate and determine the inclination of slipstream direction using shock 

expansion theory. 

 
17. a. Derive the Area – Mach relation for the variable area ducts like a nozzle. 

b. Consider the purely subsonic flow in a convergent – divergent duct. The inlet, throat and 

the exit area are 1 m2, 0.7 m2 and 0.85 m2 respectively. If the inlet Mach and pressure are 0.3 and 

0.8 x 105 N/m2, respectively, then calculate: M and p at the throat and exit. 

OR 

18. Explain about the role of leading edge extension to improve the performance of aircraft at high 

angle of attack. 

 
19. Write a short note on Non dimensional parameters and explain about its importance in wind 

tunnel testing. 

OR 

20. Discuss briefly about schileren flow visualization technique with neat sketch. 
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MALLA REDDY COLLEGE OF ENGINEERING ANDTECHNOLOGY 

(UGC AUTONOMOUS) 

III B.TECH I SEMESTER – AERONAUTICAL ENGINEERING 

HIGH SPEED AERODYNAMICS - II (R15) 

MODEL PAPER – V 

MAXIMUM MARKS: 75 
PART A Max Marks: 25 

i. All questions in this section are compulsory 

ii. Answer in TWO to FOUR sentences. 

 
1. Define the terms continuum flow, free – molecular flow and low density or rarefied flows. 

(3 M) 

2. Define the terms Universal gas constant, Gas constant and Boltzmann constant. (2 M) 

3. Explain in simple steps, how supersonic stream is generated in a Convergent – divergent 

nozzle. (3 M) 

4. Give the relation of change in entropy of the flow across a normal shock wave. (2 M) 

5. Define flow deflection angle, shock angle and mach angle. (2 M) 

6. How does an expansion fan or a shock wave behave when they encounter a free boundary? 

Illustrate the diamond wave pattern using neat sketch. (3 M) 

7. State area – rule and define super critical airfoil. (3 M) 

8. Give the expressions used for correcting Prandtl – glauret rule. (2 M) 

9. Give the expression for pressure coefficient in linearised supersonic flow. (2 M) 

10. Define transonic drag. (3 M) 
 

PART B Max Marks: 50 

i. Answer only one question among the two questions in choice. 

ii. Each question answer (irrespective of the bits) carries 10M. 

11. a. Define compressibility. (3M) 

b. Explain briefly about changes in flow properties due to one dimensional flow with heat 

addition and friction. (7M) 

OR 

12. A ramjet flies at 11 km altitude with a flight Mach number of 0.9. In the inlet diffuse, the air 

is brought to the stagnation condition so that it is stationary just before the combustion 

chamber. Combustion takes place at constant pressure and a temperature increase of 15000C 

takes place. The combustion products are then ejected through the nozzle. 

a. Calculate the stagnation pressure and temperature. 

b. What will be the nozzle exit velocity?    (refer RathaKrishnan, chapter 4) 

13. a. Using neat sketch, explain the change of properties behind a oblique shock wave.   (5 M) 

b. Upstream of the oblique shock wave M1 = 3, p1 = 0.5 atm and T1 = 200 K. Calculate the 

effect of wave angle on the down stream properties M2, p2, T2, u2, ρ2 for 15 and 30 degrees. 

(5 M) 
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OR 

 
14. a. Write short notes on wave reflection from free boundary. 

b. Air flows at Mach 4.0 and pressure 105 N/m2 is turned abruptly by a wall into the flow with 

a turning angle of 20o. If the shock is reflected by another wall determine the flow properties 

M and ρ downstream of the reflected shock. 

15. Derive the velocity potential equation. 

OR 

 
16. Write a short note on Critical Mach number, Drag divergence number and supercritical airfoil. 

17. Derive the expression for mass flow rate of a calorically perfect gas through a choked nozzle. 

𝛾+1 
 

Explain the terms used clearly.𝑚̇  = 
𝑝𝑜𝐴

∗ 
√𝛾       2      𝛾−1

 

√𝑇𝑜 𝑅    𝛾+1 

OR 

18. a. Write a short note on vortex lift and its effect. 

b. Explain briefly about flow behavior over delta wings at high angle of attack. 

 
19. Write a short note on Shadow graph flow visualization technique with neat sketches 

OR 

20. Discuss briefly about the wind tunnel balances to measure the forces and moments. 
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Chapter 1 

One dimensional compressible 

  flows  
 

 

1.1 Introduction 

The first and foremost point, that is related with high speed aerodynamics is 
that here the speed of the fluid or air is considerably large, then, how large it is 
that quantification we will be doing later on, but we can say that, the speed is 
comparable to the local speed of sound. And then, in order to maintain a flow at 
very high speed. Obviously, the pressure difference or the pressure changes that 
will be associated are quite large. Now once, the pressure changes are large, the 
gases is likely to change its density. 

 

1.2 Compressible  flows 

Compressible flow is the science of fluid flow where the density change associ- 
ated with pressure change is significant. Fluid mechanics is the science of fluid 
flow in which the temperature changes associated with the flow are insignificant. 
The simple definition of compressible flow as one in which the density is variable 
requires more elaboration. Consider a small element of fluid of volume v. The 
pressure exerted on the sides of the element by the neighboring fluid is p. Assume 
the pressure is now increased by an infinitesimal amount dp. The volume of the 
element will be correspondingly compressed by the amount dv. Since the volume 
is reduced, dv is a negative quantity. The compressibility of the fluid, τ , is defined 
as 

1 dp 
τ = − 

v dv 
(1.1) 

Fluids such as water are incompressible (i.e density does not change) under 
normal conditions. But under conditions of high pressure (e.g. 1000 atm) they are 
compressible. The change in volume is the characteristic feature of a compressible 
medium under static conditions. Under dynamic conditions, that is when the 
medium is moving, the characteristic feature for incompressible and compressible 
flow  situations  are:   the  volume  flow  rate,  Q̇ = AV  = constant at any cross- 
section  of  a  streamtube  for  incompressible  flow,  and  the  mass  flow  rate,  ṁ   = 
ρAV = constant at any cross-section of a streamtube for compressible flow. Here, 
A is the cross-sectional area of the streamtube and V and ρ are the the velocity 
and density of the fluid at that cross-section. 

As long as a gas flows at a sufficiently low speed fromone cross-section of a pas- 
sage to another the change in volume (or density) can be neglected and, therefore, 
the flow can be treated as incompressible. Although the fluid is compressible, this 
property may be neglected when the flow is taking place at low speeds. In other 
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Fig.  1.1: Streamtube 

 
 

words, although there is some density change associated with every physical flow, 
it is often possible (for low-speed flows) to neglect it and idealize the flow as in- 
compressible. This approximation is applicable to many practical flow situations, 
such as low-speed flow around an airplane and flow through a vacuum cleaner. 

From the above discussion it is clear that compressibility is the phenomenon 
by virtue of which the flow changes its density with changes in speed. Now, the 
question is, what are the precise conditions under which density changes must be 
considered? 

A quantitative measure of compressibility is the volume modulus of elasticity 
E, defined as 

 

E = 
  △P  

△V/Vi 

 

(1.2) 

where △P is the change in static pressure, △V is the change in volume, and 
Vi is the initial volume. For ideal gases, the equation of state is 

 
PV = RT (1.3) 

For isothermal flows, this reduces to 

PV = PiVi = constant (1.4) 

where Pi is the initial pressure. 

The above equation may be written as 
 

(Pi + △P )(Vi + △V ) = PiVi (1.5) 

Expanding this equation, and neglecting the second-order terms, we get 
 

△PVi + △V Pi = 0 (1.6) 
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Therefore,  
△P = −Pi 

△
 

 

 
(1.7) 

i 

For gases, from Eqs. 1.2 and 1.7, we get 
 

E = Pi (1.8) 

Hence, by Equ. 1.7, the compressibility may be defined as the volume modulus 
of the pressure. 

Further, By mass conservation, we have ṁ = ρV  = constant, where ṁ is mass 
flow rate per unit area, V is the flow velocity, and ρ is the corresponding density. 
This can also be written as 

(Vi + △V ) (ρi + △ρ) = ρiVi (1.9) 

Considering only first-order terms, this simplifies to 

△ρ 
= −

△V (1.10) 
ρi Vi 

Substituting this into Equ. 1.2, we get 

P = E 
△ρ

 
ρi 

(1.11) 

From Equ. 1.11, it can be seen that the compressibility may also be defined 
as the density modulus of the pressure. 

For incompressible flows, by Bernoulli’s equation, we have 

P + 
1 

ρV 2 = constant = P 
2 

stag (1.12) 

where the subscript “stag” refers to stagnation condition.The above equation 
may also be written as 

Pstag 

1 2 

— P = 
2 

ρV (1.13) 

that is the change of pressure from stagnation to static states is equal to 1 ρV 2. 
Using equ. 1.11, the above equation can be written as 

△P 
= 

△ρ 
= 

ρiVi   = 
qi (1.14) 

E ρi 2E E 

Here, qi = 1 ρiV 2 is the dynamic pressure. Equ. 1.14 relates the density change 
2 i 

to the flow speed. 

The compressibility effects can be neglected if the density changes are very 
small, i.e. if 

△ρ 
1 (1.15) 

ρi 
 

△ 

V 
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From equ. 1.14, it is seen that for neglecting compressibility 

q 

E 
≪ 1 (1.16) 

For gases, the speed of sound a may be expressed in terms of pressure and 
density changes as 

a2 = 
△P 

△ρ 

Using Equ. 1.11 in the above relation, we get 
 

a2 = 
E

 
ρi 

(1.17) 
 
 

 
(1.18) 

Using this Equ. 1.14 changes to 
 

2 2 

△ρ 
= 

ρi Vi    = 
1 V 

 
 
 

(1.19) 
ρi 2  E 2 2 

 

The ratio V/a is called the Mach number M .Therefore, the condition of in- 
compressibility for gases becomes 

 

M 2 

2 
≪ 1 (1.20) 

Thus, the criterion determining the effect of compressibility for gases is that the 
magnitude of theMach numberMshould be negligibly small. Indeed,mathematics 
would stipulate this limit as M 0. But Mach number zero corresponds to 
stagnation state. Therefore, in engineering sciences flows with very small Mach 
numbers are treated as incompressible. To have a quantification of this limiting 
value of the Mach number to treat a flow as incompressible, a Mach number 
corresponding to a 5 

 

△ρ 
0.05 or 5% (1.21) 

ρ 

that is when M     0.3. In other words, the flow may be treated as incompress- 
ible when V   100 m/s, that is when V    360 kmph under standard sea level 
conditions. 

 

1.3 Thermodynamics  concepts 

The kinetic energy per unit mass, v2/2, of a high-speed flow is large. As the flow 
moves over solid bodies or through ducts such as nozzles and diffusers, the local 
velocity, hence local kinetic energy, changes. In contrast to low-speed or incom- 
pressible flow, these energy changes are substantial enough to strongly interact 
with other properties of the flow. Because in most cases high-speed flow and com- 
pressible flow are synonymous, energy concepts play a major role in the study and 
understanding of compressible flow. In turn, the science of energy (and entropy) is 
thermodynamics; consequently, thermodynamics is an essential ingredient in the 
study of compressible flow. 
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1.3.1 Thermodynamic  Systems 

A thermodynamic system is a quantity of matter separated from the ”surround- 
ings” or the ”environment” by an enclosure. The system is studied with the help 
of measurements carried out and recorded in the surroundings. A thermometer 
inserted into a system forms part of the surroundings. Work done by moving a 
piston is measured by, say, the extension of a spring or the movement of a weight 
in the surroundings. Heat transferred to the system is measured also by changes 
in the surroundings e.g., heat may be transferred by an electrical heating coil. The 
electric power is measured in the surroundngs. 

 

Types of systems 

Two types of systems can be distinguished. These are referred to, respectively, as 
closed systems and open systems or control volumes. A closed system or a control 
mass refers to a fixed quantity of matter, whereas a control volume is a region in 
space through which mass may flow. A special type of closed system that does 
not interact with its surroundings is called an Isolated system. 

Two types of exchange can occur between the system and its surroundings: 

❼   Energy exchange (heat or work). 

❼   Exchange of matter (movement of molecules across the boundary of the 
system and surroundings). 

Based on the types of exchange, a system can can be called as: 
 

❼   Isolated Systems: No exchange of matter and energy. 

❼   Closed Systems:  No exchange of matter but some exchange of energy. 

❼   Open Systems: Exchange of both matter and energy 
 

If the boundary does not allow heat (energy) exchange to take place it is called 
adiabatic boundary. 

 

1.3.2 Perfect gas 

A perfect gas is one whose individual molecules interact only via direct collisions, 
with no other intermolecular forces present. For such a perfect gas, the properties 
p, ρ, and the temperature T are related by the following equation of state 

 

p = ρRT (1.22) 

where R is the specific gas constant. For air, R = 287J/Kg − K 

1.3.3 Internel energy and Enthalpy 

Internal energy is the sum of the kinetic and potential energies of the particles that 
form the system. For an equilibrium system of a real gas where intermolecular 
forces are important, and also for an equilibrium chemically reacting mixture of 
perfect gases, the internal energy is a function of both temperature and volume. 
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Let e denote the specific internal energy (internal energy per unit mass). Then, 
the enthalpy, h, is defined, per unit mass, as 

 
h = e + pv (1.23) 

In many compressible flow applications, the pressures and temperatures are 
moderate enough that the gas can be considered to be calorically perfect. Consis- 
tent with Equ. 1.22 and the definition of enthalpy is the relation 

 

cp − cv = R (1.24) 

where the specific heats at constant pressure and constant volume are defined 
as 

 

 
and 

 

 
respectively. 

 
cp = 

 

 
cv = 

∂h 
 

 

∂T p 

 

∂e 
 

 

∂T v 

 
(1.25) 

 

 
(1.26) 

Equ. 1.24 can be deduced into useful forms. Dividing Equ. 1.24 by cp 
 

1 
cv 

=
 R 

cp cp 
(1.27) 

 

Defining the heat capacity ratio, γ = cp/cv, Equ. 1.27 becomes 
 

1 R 
1 − 

γ 
= 

c
 (1.28) 

 

Solving for cp,  
γR 

cp = 
γ − 1 

(1.29) 

Similarly, by dividing Equ. 1.27 by cv, we find that 
 

R 
cv = 

γ − 1 
(1.30) 

Equations 1.29 and 1.30 hold for a thermally or calorically perfect gas. They 
will be widely used for treatment of compressible flow. 

 

1.3.4 Laws of Thermodynamics 

1.3.4.1 Zeroth law of thermodynamics 

 

This law states that, when system A is in thermal equilibrium with system B and 
system B is separately in thermal equilibrium with system C then system A and 
C are also in thermal equilibrium. This law portrays temperature as a property 
of the system and gives basis of temperature measurement. 

 

p 
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1.3.4.2 First law of thermodynamics 

Consider a closed system, consisting of a certain amount of gas at rest, across 
whose boundaries no transfer of mass is possible. Let ∂Q be an incremental 
amount of heat added to the system across the boundary (by thermal conduction 
or by direct radiation). Also, let ∂W denote the work done on the system by 
the surroundings (or by the system on the surroundings). The sign convention 
is positive when the work is done by the system and negative when the work is 
done on the system. Owing to the molecular motion of the gas, the system has 
an internal energy U. The first law of thermodynamics states that the heat added 
minus work done by the system is equal to the change in the internal energy of 
the system: 

 

∂Q − ∂W = de (1.31) 

This is an empirical result confirmed by laboratory experiments and practical 
experience. In Equ. 1.31, the internal energy U is a state variable (thermodynamic 
property). Hence, the change in internal energy de is an exact differential and its 
value depends only on the initial and final states of the system. In contrast (the 
non-thermodynamic properties), ∂Q and ∂W depend on the process by which the 
system attained its final state from the initial state. 

In general, for any given de, there are an infinite number of ways (processes) 
by which heat can be added and work can be done on the system. In the present 
course of study, we will mainly be concerned with the following three types of 
processes only. 

❼ Adiabatic process: A process in which no heat is added to or taken away 
from the system. 

❼ Reversible process: A process which can be reversed without leaving any 
trace on the surroundings, that is both the system and the surroundings are 
returned to their initial states at the end of the reverse process. 

❼   Isentropic process: A process which is adiabatic and reversible. 

 

1.3.4.3 The Second Law of Thermodynamics 

Let us consider a cold body coming into contact with a hot body. From experience, 
we can say that the cold body will get heated up and the hot body will cool down. 
However, Equ. 1.31 does not necessarily imply that this will happen. In fact, the 
first law allows the cold body to become cooler and the hot body to become hotter 
as long as energy is conserved during the process. However, in practice this does 
not happen; instead, the law of nature imposes another condition on the process, 
a condition that stipulates the direction in which a process should take place. To 
ascertain the proper direction of a process, let us define a new state variable, the 
entropy, as follows. 

 

ds = 
∂qrev 

T 
(1.32) 

where s is the entropy (amount of disorder) of the system, ∂qrev is an in- 
cremental amount of heat added reversibly to the system, and T is the system 
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temperature. The above definition gives the change in entropy in terms of a re- 
versible addition of heat, ∂qrev. Since entropy is a state variable, it can be used 
in conjunction with any type of process, reversible or irreversible. The quantity 
∂qrev is just an artifice; an effective value of ∂qrev can always be assigned to relate 
the initial and final states of an irreversible process, where the actual amount of 
heat added is ∂qrev. Indeed, an alternative and probably more lucid relation is 

 

ds = 
∂q 

T  
+ dsirrev (1.33) 

The above equation applies to all process. It states that the change in entropy 
during any process is equal to the actual heat added, ∂q, divided by the temper- 
ature, ∂q/T , plus a contribution from the irreversible dissipative phenomena of 
viscosity, thermal conductivity, and mass diffusion occurring within the system, 
dsirrev.These dissipative phenomena always cause an increase in of entropy: 

 

dsirrev ≥ 0 (1.34) 

If ds > 0, the process is called an irreversible process, and when ds = 0, the 
process is called a reversible process. A reversible and adiabatic process is called 
an isentropic process. However, in a nonadiabatic process, we can extract heat 
from the system and thus decrease the entropy of the system. 

 

1.3.5 Entropy Calculation 

For a reversible process, Entropy is defined as 
 

∂q = T ds (1.35) 

 
Using Equ. 1.31, the above equation can be written as 

 

T ds = de + p dv (1.36) 
 
 

T ds = dh − v dp (1.37) 

The specific heat at constant pressure can be written as 

dh 
cp = 

dT 
(1.38) 

Substituting the above equation in Equ. 1.37, we get 
 

dT 
ds = cp 

T 
− 

v dp 
(1.39) 

T 

Substituting the perfect gas equation, pv = RT into the above equaation, we 
get 

 

dT dp 
ds = cp 

T   
− R 

p 
(1.40) 
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Integrating the above equation between states 1 and 2, we get 
 

s2 − s1 

T2 dT 
= cp 

T1 

p2 
— Rln 

p
 

 

(1.41) 

 

Using de = cv dT in the above equation, the change in entropy can be expressed 
as 

s2 − s1 
T2 

= cvln 
1 

v2 
+ Rln 

v1 

 
(1.42) 

 

1.3.6 Isentropic  relations 

An adiabatic and reversible process is called an isentropic process. For an adiabatic 
process, ∂q = 0, and for a reversible process, dsirrev = 0. An isentropic process 
is one for which ds = 0, that is the entropy is constant. Important relations for 
an isentropic process can be obtained from Equ.  1.41 and Equ.  1.42, by setting 
s2 = s1. Applying s2 = s1 in Equ. 1.41 deduces to 

 

0 = c ln 
T2  

− R ln
p2

 

T1 p1 
 

ln 
p2

 

p1 
= 

cp 

R 
ln 

T2
 

T1 
  

p2 
= 

T2 
 cp/R  

(1.43) 
 

From Equ: 1.29, 

p1 T1 
 

cp γ 
= 

R γ − 1 
 

and substituting Equ. 1.29 into Equ. 1.43, we get 

  
p2 

= 
T2 
 γ/(γ−1)  

(1.44) 
p1 T1 

 

Similarly from Equ. 1.42,  
 
 
0 = c 

 
ln 

T2 
+ R ln

v2
 

T1 v1 
 

ln
v2   

= − 
cv 

ln 
T2

 

v1 R T1 
 

  
v2  = 

T2 

 −cv/R  
(1.45) 

v1 T1 
 

From Equ. 1.30 
cv 1 

= 
  R γ − 1  

T 1 

T 

p 

v 
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Substituting the above equation in Equ. 1.45, we get 
 

  
v2 

= 
T2 
 −1/(γ−1)  

(1.46) 
v1 T1 

 

The above equation can also written as 
 

  
ρ2  = 

T2 

 1/(γ−1)  
(1.47) 

ρ1 T1 
 

Summarizing Equ. 1.44 and Equ: 1.47, 
 
 

(1.48) 
 
 

The above Equ. 1.48 relates pressure, density and temperature for an isen- 
tropic process. This relation is important and is frequently used in the analysis of 
compressible flows. 

 
1.4 One-dimensional flow governing equations 

Consider the flow through ,I one-dimensional region, a replesented by the shaded 

area in Fig. ??. This region may be a normal shock wave. or it may be a region 
with heat addition; in either case. the flow properties change as a function of 
x as the gas flows through the region. To the left of this region, the flowfield 
velocity, pressure, temperature, density, and internal energy are u1, pl, T1, p1, and 
el respectively. To the right of this region, the properties have changed, and are 
given by u2, p2, T2, p2, and e2. 

 

 

 

Fig.   1.2: Rectangular control volume for the one-dimensional flow 
 
 
 

 

  
p2 

= 
ρ2 
 γ    γ/(γ−1) 

p1 
= 

T2 

ρ1 T1 
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1.4.0.1 1D continuity equation 
 

The continuity equation is 

— 

✍ 
 

 

 
 ∂ 

ρ V.dS = 
∂t V 

 

 
ρ  dV (1.49) 

 

For the steady flow, the above equation becomes 

 
ρ  V.dS = 0 (1.50) 

S 
 

Evaluating the surface integral over the left-hand side, where V and dS are 

parallel but in opposite directions, we obtain −ρ1u1A; over the right-hand side, 
where V and dS are parallel and in the same direction, we obtain ρ2u2A. The 
upper and lower horizontal faces of the control volume both contribute nothing to 
the surface integral because V and dS are perpendicular to each other. The above 
equations becomes 

−ρ1u1A + ρ2u2A = 0 

 
 

 

Equ. 1.51 is the continuity equation for steady one-dimensional flow. 

 
1.4.0.2 1D momentum equation 

The momentum equation in integral form is 

(1.51) 

 

✍ 
(ρV.dS)V + 

✝
 

∂(ρV )
dV  =

 

∂t 
ρfdV − 

✍
 

p  dS (1.52) 

For steady flow, the above equation becomes 

✍ 
(ρV.dS)V = − 

✍ 
p dS (1.53) 

 

The above equation is a vector equation. Since we are dealing in 1D flow, we 
will consider only the scalar x component of the equation which is 

✍ 
(ρV.dS)u = − 

✍ 
(pdS)x (1.54) 

 

In the above equation, the term (pdS)x is the x component of the vector p dS. 
Solving the above equation over the left and right hand sides of the dashed control 
volume in Fig. ??, we get 

ρ1(−u1A)u1 + ρ2(u2A)u2 = −(−p1A + p2A) 
 
 

(1.55) 

Equ. 1.55 is the momentum equation for steady 1D flow. 
 

s s 

S S 

ρ1u1 = ρ2u2 

S 

p1 + ρ1u2 = p2 + ρ2u2 1 2 

✍ 

s 

✝ S 

V V 
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1.4.0.3 1D Enery Equation 

The energy equation in integral form can be written as 
 

q̇ρdV −

✍
 

 
pV.dS+ 

V 

 ∂ 
ρ(f.V )dV  = ρ 

V ∂t 

V 2 
   

e + 
2 

 
dV + ρ 

S 

V 2 
  

e + 
2 

 
V.dS 

(1.56) 
The first term on the left physically represents the total rate of heat added 

to the gas inside the control volume. For simplicity, let us denote this volume 
integral  by  Q̇ .   The  third  and  fourth  terms  are  zero  because  of  zero  body  forces 
and steady flow, respectively. Hence, the above equation becomes 

Q̇  − 

✍
 
 

pV.dS = ρ 
S 

V 2 
  

e + 
2 

 
V.dS (1.57) 

 

Evaluating the surface integral over the left and right hand faces of the control 
volume in Fig. ??, we get 

Q̇  − (−p1u1A + p2u2A) = −ρ1 
u2

 

e1 +
 1 

2 

 
u1A + ρ2 

u2
 

e2 +
 2 

2 

 
u2A 

 

Rearranging, we get 

Q̇ 

A 
+ p1u1 + ρ1 

 

u2
 

e1 +
 1 

2 

 

 
u1 = p2u2 + ρ2 

 

u2
 

e2 +
 2 

2 

 

 
u2 (1.58) 

 

Dividing the above equation by Equ. 1.51, i.e. dividing the left hand side by 
ρ1u1 and the right hand side by ρ2u2, 

 

Q̇ p1 
+ 

ρ1u1A ρ1 
 u

2 

+ e1 + 
2 

= 
p2 

ρ2 
 u

2 

+ e2 + 
2 

 

(1.59) 

 

Considering  the  1st  term  in  the  above  equation,  Q̇ is the net rate of heat 
(energy/s) added to the control volume, and ρ1u1A is the mass flow (mass/s) 
through the control volume.  Hence, the ratio Q̇ /ρ1u1A is the heat added per unit 
mass, q. Also, the definition of enthalpy, h = e + pv, Hence, the above equation 
becomes 

(1.60) 
 

Equ. 1.60 is the energy equation for steady 1D flow. 

 

1.4.1 Speed of Sound 

Soundwaves are infinitely small pressure disturbances.The speedwith which sound 
propagates in a medium is called the speed of sound and is denoted by a. Consider 
that the sound wave is moving with velocity a through the gas as shown in fig. 
??. As the flow pass through the stationary wave front the flow ahead of it moves 
toward the wave at velocity u with pressure, density, and temperature p, ρ, and T , 
respectively, and the flow behind it moves away from the wave at velocity a + da 

 

S 

S 

✝ 
V 

✝ 
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with pressure p + dp, density ρ + dρ. and temperature T + dT . 

 

Fig.  1.3: Schematic of a sound wave 
 

 
The flow through the sound wave is one-dimensional. If regions 1 and 2 are in 

front of and behind the wave, respectively. Using the continuity equation we can 
write, 

ρa = (ρ + dρ)(a + da) 

 
ρa = ρa + adρ + ρda + dpda (1.61) 

The product of two infinitesimal quantities dp da is very small (2nd order) and 
hence they can be ignored in the above equation. 

da 
a = −ρ

dρ 
(1.62) 

Next the momentum equation yields 
 

p + ρa2 = (p + dp) + (ρ + dρ)(a + da)2 (1.63) 
 

Ignoring second order (products of differentials) terms as earlier, we get 

dp = −2aρda − a2dρ (1.64) 

Solving the above equation for da gives, 

dp + a2dρ 
da = 

−2aρ 
(1.65) 

 

Substituting Equ. 1.65 into Equ. 1.62, gives 
 

dp/dρ + a2 
 
 

a = −rho 
−2aρ 

(1.66) 

 
 



High Speed Aerodynamics (R18A2113) 14 Dr. G. Srinivasan 
14 31  

− 

Chapter 1. One dimensional compressible flows 
 

 

Solving the above equation for a2 gives 

a2 = 
dp 

dρ 

 

 
(1.67) 

 

The process inside the sound wave must be isentropic. In turn, the rate of 
change of pressure with respect to density, dpldp, which appears in Equ. 1.67 is 
an isentropic change, and Equ. 1.67 can be written as 

 

a2 = 
∂p 

 

 

∂ρ  s 
(1.68) 

 

Equ.  1.68 is the fundamental expression for the speed of sound.  It imples 
that the speed of sound is a direct measure of the compressibility of a gas. Using 

ρ = 1/v, dp = −dv/v2. Hence Equ. 1.68 can be written as 

 
a2 = 

∂p 
= 

∂ρ  s 

∂p 

∂v s 
v2 = 

  v  

(1/v)(∂v/∂p)s 

 
(1.69) 

 

Using the definition of isentropic compressibility, τs, we find 
 
 

(1.70) 
 

 
The above equation confirms the statement (τs = 0) implies an infinite speed 

of sound. For very strong pressure waves, the traveling speed of a disturbance 
may be greater than that of sound. The pressure can be expressed as 

 

p = p(ρ) 
 

For an isentropic process of a gas, 
 

pvγ = constant 
 

Now,   
∂p γp 

= 
∂ρ   s ρ 

 

(1.71) 

 

Hence Equ. 1.70 can be written as 
 

(1.72) 
 

 
Using the equation of state, p/ρ = RT , the above equation can be written as 

 

(1.73) 
 

s    r   

a = 
∂p 

∂ρ 
= 

s 

v 

τs 

r   

a = 
γp 

ρ 

√   
a = γRT 

− 
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1.4.2 Alternate form of energy equation 

Consider Equ. 1.60. Assuming no heat addition, this becomes 
 

 u
2 

h1 + 
2 

 u
2 

= h2 + 
2 

 

(1.74) 

 

Here points 1 and 2 corresponds to regions 1 and 2 identified in Fig. ??. For 
a calorically perfect gas, h = cpT , the above equations becomes 

 

(1.75) 

 

Using Equ. 1.29, the above equation becomes 
 

γRT1 
 

 

γ − 1 

 u
2 

+ 
2 

= 
γRT2 

γ − 1 

 u
2 

+ 
2 

 

(1.76) 

Since a = 
√

γRT , the above equation becomes 
 

a2 u2 a2 u2 
  1      +   1  = 2      +  2 (1.77) 
γ − 1 2 

√   
γ − 1 2 

Using a = γP/ρ, the above equation can be written as 
 

(1.78) 
 

Consider the fluid is brought to Mach 1 at point 2 then flow is sonic in region 
2 and suffix 2 is replaced with prefix * in equations representing sonic conditions. 
On the region 1, u1 = u and in region 2, u2 = a∗. 

a2 u2 
+ 

γ − 1 2 

a∗2 
= + 

γ − 1 

a∗2 
 

 

2 

 
(1.79) 

 

a2 u2 
+ 

γ − 1 2 

γ + 1 
= 

2(γ − 1) 
a∗2 

 

(1.80) 

 

Now consider fluid is brought to rest isentropically i.e u2 = 0, at point 2 
representing total conditions denoted by suffix o then, assuming T1 = T  and 
u1 = u in region 1 and u2 = 0 and T2 = To Equ. 1.75 changes to 

u2 

cpT + 
2  

= cpTo (1.81) 

To u2 u2 
 

 

u2 γ − 1  u 2 
 

   

T  
= 1 + 

2c T  
= 1 + 

2γRT/(γ − 1) 
= 1 + 

2a2/(γ − 1) 
= 1 + 

2 a 
Hence, 

(1.82) 

 

cpT1 + 1 = cpT2 + 
u 

2 
 u

2 

2 
2 

2 

    γ 

γ − 1 

  
 p1 

ρ1 

  

+ 
 u

2 
    

γ p2 u2 

2 γ − 1 

1  = 
ρ2 

+ 2 

2 

To 
= a + 

γ − 1 
M 2 

T 2 
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Equ. 1.82 gives the ratio of total to static temperature in a flow as a function 
of the Mach number M at that point. Furher, for an isentropic process, Equ. 1.48 
holds, such that 

po 
= 

ρo 
=

 

 
γ/(γ−1) 

o 
 

 

(1.83) 
p ρ T 

Combining Equ. 1.83 and Equ. 1.82, we get 
 
 

(1.84) 
 
 
 

(1.85) 

 
Equ. 1.84 and Equ. 1.85 gives the ratios of total to static pressure and density, 

respectively, at a point in the flow as a function of Mach number M at that point. 
 

1.5 Flow regimes 

The Mach number (M) is defined as the ratio of the speed of an object (or of a flow) 
to the speed of sound. For instance, in air at room temperature, the speed of sound 
is about 340 m/s (1,100 ft/s−1. M can range from 0 to     , but this broad range 
falls naturally into several flow regimes. These regimes are subsonic, transonic, 
supersonic, hypersonic, and hypervelocity flow. The figure below illustrates the 
Mach number ”spectrum” of these flow regimes. 

These flow regimes are not chosen arbitrarily, but rather arise naturally from 
the strong mathematical background that underlies compressible flow (see the 
cited reference textbooks). At very slow flow speeds the speed of sound is so much 
faster that it is mathematically ignored, and the Mach number is irrelevant. Once 
the speed of the flow approaches the speed of sound, however, the Mach num- 
ber becomes all-important, and shock waves begin to appear. Thus the transonic 
regime is described by a different (and much more difficult) mathematical treat- 
ment. In the supersonic regime the flow is dominated by wave motion at oblique 
angles similar to the Mach angle. Above about Mach 5, these wave angles grow so 
small that a different mathematical approach is required, defining the Hypersonic 
speed regime. Finally, at speeds comparable to that of planetary atmospheric 
entry from orbit, in the range of several km/s, the speed of sound is now compar- 
atively so slow that it is once again mathematically ignored in the hyper-velocity 
regime. 

 

1.6 Normal shock relations 

A shock which is perpendicular to flow direction is known as normal shock. It 
commonly occurs in supersonic flow changes the upstream supersonic flow to sub- 
sonic. 

Applying one dimensional fluid flow governing equation to flow across normal 
shock by considering a control volume around it as shown in Fig. 1.4. The basic 
normal shock equations are directly obtained from equations 1.51, 1.55 and 1.60 
with q = 0 (shock wave is adiabatic), we have 

 

po 
= 1 + 

γ − 1 
M 2 

   γ/(γ−1) 

p 2 

ρo 
= 1 + 

γ − 1 
M 2 

   1/(γ−1) 

ρ 2 

T 
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Fig.  1.4: Illustration of flow conditions ahead and behind the normal Shock wave 
 
 
 

 
ρ1u1 = ρ2u2 

p1 + ρ1u2 = p2 + ρ2u2 
1 

 u
2 

h1 + 
2 

2 

 u
2 

= h2 + 
2 

 

For a calorically perfect gas, we can immediately add the thermodynamic relations 
 

p = ρRT (1.86) 

 
h = cpT (1.87) 

Dividing the momentum equation with continuity equation, we get 

p1 

ρ1u1 

√   

p2 
— 

ρ2u2 = u2 − u1 (1.88) 

Recalling a = γp/ρ, the above equation becomes 
 

  a
2 

γu1 
  a

2 

— 
γu2 = u2 − u1 (1.89) 

 

The alternate form of energy equation, using Equ. 1.60 and Equ. 1.80, yields 
 

a2 = 
γ + 1 

a∗2 − 
γ − 1 

u2 (1.90) 

 
and 

1 2 2 1 

a2 = 
γ + 1 

a∗2 − 
γ − 1 

u2 (1.91) 
 

 

2 2 
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Since the flow is adiabatic across the shock wave,  a∗  in the above equations 
is same constant value. Substituting both of the above alternate form energy 
equation into Equ. 1.89, we get 

γ + 1 a∗2 γ − 1 
 

 

γ + 1 a∗2 γ − 1 
 

 

2 γu1 
−

 2γ   
u1 −

 

+ 
2 γu2 2γ   

u2 = u2 − u1 

  γ + 1   (u — u )a∗2 + 
γ − 1 

(u 
 

— u ) = u − u 

2γu1u2 2γ 2 1 2 1 

Dividing by (u2 − u1), 
γ + 1 γ 1

 

Solving for a∗, gives 

2γu1u2 
a∗2 +

  −   
= 1 

2γ 

 
 

 
(1.92) 

 

Equ. 1.92 is called the Prandtl relation, which is useful for intermediate normal 
shocks. Example, we can obtain 

1 = 
u1 

= M ∗M ∗ 
a∗ 1 2 

 
 
 

 
 

(1.93) 

 

Here, the flow ahead of a shock wave must be supersonic, i.e.  M1 > 1.  this 
implies that M ∗ > 1.  Thus, from Equ.  1.93, M ∗ < 1 and thus M   < 1, Hence, 

1 2 2 

the Mach number behind the normal shock is always subsonic 

Now, dividing Equ. 1.80 by u2, we get 

(a/u)2 1 
+ 

γ − 1 2 

 
γ + 1 

= 
2(γ − 1) 

 
a∗ 

  2 

u 

(1/M )2 γ + 1    
1   

  2 
1

 
= 

γ − 1 2(γ − 1) M 2 

(1.94) 

Equ. 1.94 provides the direct relation between the actual Mach number M and 
the characteristc Mach number M ∗. 

Solving for M ∗ in Equ. 1.94 gives 

M ∗2 
(γ + 1)M 2 

= 
2 + (γ − 1)M 2 

(1.95)
 

Subsituting the Equ. 1.93 into the above equation yields 

    (γ + 1)M 2 
= 

2 + (γ − 1)M 2 

  
(γ + 1)M 2 

2 + (γ − 1)M 2 

 −1  
(1.96) 

 
 

1 

a∗2 = u u 1   2 

M  = 2   2  

[(γ + 1)/M ∗2] 
— (γ − 1) 

2 
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Solving the above equation for M 2 
 

(1.97) 
 

Equ. 1.97 demonstrates that, for a calorically perfect gas with a constant value 
of γ, the Mach number behind the shock is a function of only Mach number ahead 
of the shock. it also shows that when M1 = 1, then M2 = 1. This is the case of 
an infinitely weak normal shock,  which is defined as a Mach wave.  In contrast. 
as M1 increases above 1, the normal shock becomes stronger and M2 becomes 
progressively less than 1. 

The other flow properties across a normal shock can be obtained by combining 
Equ. 1.92 and Equ. 1.51 gives 

 

ρ2 u1 u2 u2 
2 

 

= = 1     =   1   = M ∗ 
(1.98) 

ρ1 u2 u2u1 a∗2 1 

Substituting Equ. 1.95 into the above equation yields 

(1.99) 

To obtain the pressure ratio, the momentum Equ. 1.55 can be written as 

p2 − p1 = ρ1u2 − ρ2u2 (1.100) 

combining the above equation with 1D continuity Equ. 1.51 gives 

u2 p  − p  = ρ u (u  − u ) = ρ u 1 − 
 

 

 
(1.101) 

2 1 1   1 1 2 1  1 
1 

Dividing the above equation by p1, and recalling a2 = γp1/ρ1, we obtain 
 

p2 − p1 
p1 

= γM 2 1 
u2 

u1 
(1.102) 

 

Substitute Equ. 1.99 for u1/u2 into the above equation, 

p − p   2 + (γ − 1)M 2 
 
 

 2 1 = γM 2  1 
p1 

1 

(γ + 1)M 2 
(1.103) 

 

Simplifying the above equation, we get 

 
(1.104) 

 

The temperature ratio from the equation of state p + ρRT can be written as 
 

T2 
= 

p2 ρ1 

T1 p1 ρ2 
(1.105) 

 
 

u 

M  = 2    
2 

1 + [(γ − 1)/2]M 
2 
1 

γM − (γ − 1)/2 
2 
1 

ρ2 u1 (γ + 1)M 2 

ρ1 u2 2 + (γ − 1)M 
= = 1  

2 
1 

p 2 

p1 
= 1 + 

  2γ  

γ + 1 
(M − 1) 

2 
1 

− 
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Fig.  1.5: Illustration of total conditions across a normal shock wave 
 
 
 
 

Substituting Equ. 1.104 and Equ. 1.99 into the above equation, gives 

 
(1.106) 

 

 

Now, we will study on how the total (stagnation) conditions vary across a 
normal shock wave. 

Fig. 1.5 illustrates the definition of total conditions before and after the shock. 
In region 1 ahead of the shock, a fluid element is moving with actual conditions of 
M1, p1, T1 and s1. Consider in this region the imaginary state la where the fluid 
element has been brought to rest isentropically. Thus, by definition, the pressure 
and temperature in state la are the total values pol ,and To1, respectively. The 
entropy at state la is still sl because the stagnating of the fluid element has been 
done isentropically. In region 2 behind the shock, a fluid element is moving with 
actual conditions of M2, p2,  T2,  and s2.  Consider in this region the imaginary 
state 2a where the fluid element has been brought to rest isentropically.  Here, 
by definition, the pressure and temperature in state 2a are the total values of 
pol and To1 respectively. The entropy at state 2a is still s2 by definition. The 
question is now raised how po2 and To2, behind the shock compare with po2 and 
To2, respectively, ahead of the shock. To answer this question, consider equation 

 

u 
2 

cpT1 + 
2 

 u
2 

= cpT2 + 
2 

 

From the Equ. 1.81, the total temperature is given by 

u2 

cpTo = cpT + 
2

 

T2 h2 
  

T1 h1 
= =  1 + 

  2γ  

γ + 1 

    

(M − 1) 
2 2 + (γ 
1 (γ + 1)M 2 

— 1)M 
2 
1 

  

1 
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Hence, 

and thus 

 
cpTo1 = cpTo2 

 
 
 

(1.107) 

From Equ. 1.107 it is clear that the total temperature is constant across a 
stationary normal shock wave. 

Now considering Fig. 1.5 and writing Equ. 1.41 between imaginary states 1a 
and 2a 

s − s = c ln 
T2a  

− Rln
p2a

 
 

(1.108) 
2a 1a T1a p1a 

However, s2a = s2, s1a = s1, T2a = To = T1a, p2a = po2, and p1a = po1. Hence 
the above equation becomes 

 

 

or 
  po2 

 

(1.109) 

po1 = e−(s2−s1)/R 
(1.110) 

From the above equation, we can see that the ratio of total pressure across the 
normal shock depends on the M1 only. Also, because s2 > s1, the above equations 
show that po2 < po1. The total pressure decreases across a shock wave 

 

1.7 Numerical Problems 

1. A pressure vessel that has a volume of 10m3 is used to store high-pressure air 
for operating a supersonic wind tunnel. If the air pressure and temperature 
inside the vessel are 20 atm and 300 K, respectively. a) what is the mass of 
air stored in the vessel?  b) Total energy of the gas inside the vessel.  c) If 
the gas in the vessel is heated, the temperature rises to 600 K calculate the 
change in entropy of the air inside the vessel. 

Solution: The pressure, p = 1atm = 101325 Pa 
 

ρ =  
p 

= 
20 × 101325 

= 23.46 kg/m3 
RT  287 × 300 

 

The total mass stored is then 

m = vρ = 10 × 23.46 = 234.6 kg 
 

 

R 287 
cv = 

γ − 1 
= 

1.4 − 1 
= 717.5 J/kg.K 

e = cvT = 717.5 × 300 = 2.153 × 105 J/kg 

The total energy is E = me = 234.6 × 2.153 × 105 = 5.05 × 107J 
 

p 

s2 − s1 = −Rln
p

 
po2 

o1 

To1 = To2 
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From the ideal gas equation pv = RT , we can write 
 

p2 
= 

T2 

p1 T1 

600 
= = 2 

300 
 

The change in entropy is given by 
 

T2 p2 s  − s  = c ln − Rln 

2 1 p 1 1 
 

cp = cv + R = 717.5 + 287 = 1004.5 J/kg.K 

s2 − s1 = 1004.5ln2 − 287ln2 

s2 − s1 = 497.3 J/kg.K 

The total change in entropy is 

S2 − S1 = m (s2 − s1) = 234.6 × 497.3 J/kg.K 

2. Calculate the isothermal compressibility for air at a pressure of 0.5 atm. 

Solution: The compressibility is defined as 
 

1 
τT = − 

v
 

∂v 
 

 

∂p T 

 

RT 
v = 

p 

Thus     
∂v RT 

 
 

∂p T 
= − 

ρ2
 

Hence     
1 ∂v p 

  
RT 1 

τT = − 
v

 = 
∂p T RT 

— 
p2

 = (1.111) 
p 

We can see that, compressibility for a perfect gas is simply the reciprocal of 
the pressure: 

1 1 τ  = = 
 

= 2 atm−1 (1.112) 
T p 0.5 

3. Air flows through a duct. The pressure and temperature at station 1 are 0.7 
atm and 300C, respectively. At a second station, the pressure is 0.5 atm. 
Calculate the temperature and density at the second station. Assume the 
flow to be isentropic. 

Solution: The ideal gas equation is 
 

pv = RT 
 

T p 
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p2 
= 

T2 

p1 T1 
 

T = 
p2 

T 
p1 

0.5 
= (30 + 273) = 216.43K 

0.7 
 

ρ   = 
  p2   

= 
0.5 × 101325 

= 0.81562
 

2 
RT 287 × 216.43 

4. At the nose of a missile in flight, the pressure and temperature are 5.6 atm 
and 700 K, respectively. Calculate the density and specific volume. 

Solution: Given, 

po = 5.6 atm = 5.6 × 101325 = 567420Pa 

to = 700 K 
  po 567420 ρ  = = = 2.8243 kg/m3 

o 

The specific volume is 

RTo 287 × 700 

1 1 
v = = 

ρo 2.8243 
= 0.3541 

5. At a point in the flow over an F-15 high-performance fighter airplane, the 
pressure, temperature, and Mach number are 1890 Ib/ft2, 450 R, and 1.5, 

respectively. At this point, calculate To, po, T ∗, p∗, and the flow velocity. 

Solution From Table A.1, for M=1.5; po/p = 3.671 and To/T = 1.45, Thus 

po = 3.671 × p = 3.671 × 1890 = 6938 lb/ft2 

 
To = 1.45 × T = 1.45 × 450 = 652.5 R 

From  Table  A.  1,  for  M  = 1  .O:  p/p  = 1.893  and  T/T   = 1.2.   Keeping 
in mind that, for our imaginary process where the flow is slowed down isen- 
tropically to Mach I , hence defining p*, the total pressure is constant during 
this process; also, where the flow is slowed down adiabatically to Mach 1 , 
hence defining T ∗, the total temperature is constant. Thus 

 

∗ 
p∗ = o p = 

1 
× 3.671 × 1890 = 3665 lb/ft 

po p 1.893 

∗ 

T ∗ = o T = 
1 

× 1.45 × 450 = 543.8 R 
To T 1.2 

Finally, the flow velocity is 

V = Ma = M 
√

γRT  = 1.5 × 
√

1.4 × 1716 × 450 = 1560 ft/s 
 

2 

1 
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6. A normal shock wave is standing in the test section of a supersonic wind 
tunnel. Upstream of the wave, M1 = 3, p1 = 0.5 atm, and T1 = 200 K. Find 
M2, p2, T2. and u2 downstream of the wave. 

Solution: From A.2, for M1 = 3:  p2/p1 = 10.33, T2/T1 = 2.679 and 
M2 = 0.4752. Hence 

P = 
p2 

p 
p1 

= 10.33 × 0.5 = 5.165 atm 

 

T = 
T2 

T 
T1 

= 2.679 × 200 = 535.8 K 

a  = 
√

γRT   = 
√

1.4 × 287 × 535.8 = 464 m/s 

u2 = M2a2 = 0.4752 × 464 = 220 m/s 

7. A blunt nosed missile is flying at Mach 2 at standard sea level. Calculate 
the temperature and pressure at the nose of the missile. 

Solution: The nose of the missile is a stagnation point. and the streamline 
through the stagnation point has also passed through the normal portion of 
the bow shock wave. Hence, the temperature and pressure at the nose are 
equal to the total temperature and pressure behind a normal shock. Also, 
at standard sea level, T1 = 288 K and pl = 1 atm = 101325 pa. 

From Table A.1, for M1 = 2: To1/T1 = 1.8 and po1/p1 = 7.824. Also, for 
adiabatic flow through a normal shock, To2 = To1, Hence 

 

To2 = To1 = 
To1 T 
T1 = 1.8 × 288 = 518.4 K 

 

From Table A.2, for M1 = 2: po2/po1 = 0.7209. Hence 

p = 
p02 po1 p 

 

  

= 0.7209 × 7.824 × 101325 = 5.72 × 105 pa 

o2 1 o1 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

p p 

1 

1 

1 
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Chapter 2 

Oblique Shock and Expansion 

  Waves  
 

 

2.1 Introduction 

2.1.1 Waves in supersonic flow 

The motion of a body in a fluid at rest creates disturbance in the fluid. The 
disturbances, in general, may not be small. The disturbances in the fluid close to 
the body are transmitted to other parts of the body and also to the other parts of 
the fluid through propagation of the waves. The wave motion is compatible with 
the motion of the body. This wave motion determines the pressures on the body 
as well as the complete flow field around the body. When the flow is subsonic, it 
is not essential to consider the wave motion. Particularly, if the motion is steady 
it is easier to study the motion from a reference system where the body is at 
rest and the fluid flows over it. However, if the relative wind is supersonic, the 
waves can not propagate ahead of the immediate vicinity of the body. Thus, the 
wave system travels with the body and is stationary in the reference system that 
moves with the body. Limited upstream influence allows the flow to be analyzed 
or constructed step by step. 

Let us examine the propagation of pressure disturbances created by a moving 
object, shown in Fig. 2.1.In a subsonic flow the disturbance waves reach a sta- 
tionary observer before the source of disturbance could reach him, as shown in 
Fig. 2.1(a) and 2.1(b).   But in supersonic flows it takes a considerable amount 
of time for an observer to perceive the pressure disturbance, after the source has 
passed. This is one of the fundamental differences between subsonic and super- 
sonic flows.Therefore, in a subsonic flow the streamlines sense the presence of any 
obstacle in the flow field and adjust themselves well ahead of the obstacle and 
flow around it smoothly.   But in a supersonic flow, the streamlines feel the ob- 
stacle only when they hit it. The obstacle acts as a source, and the streamlines 
deviate at the Mach cone, as shown in Fig. 2.1(d) Thus, in a supersonic flow, the 
disturbance due to an obstacle is sudden and the flow behind the obstacle has to 
change abruptly. 

In Fig. 2.1(d), it is shown that for supersonic motion of an object there is a well-
defined conical zone in the flow field with the object located at the nose of the cone, 
and the disturbance created by the moving object is confined only to the field 
included inside the cone.The flow field zone outside the cone does not even feel 
the disturbance. For this reason, von-Karman termed the region inside the cone 
as the zone of action, and the region outside the cone as the zone of silence.The 
lines at which the pressure disturbance is concentrated and which generate the 
cone are called Mach waves or Mach lines.The angle between the Mach line and 
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

 
(b) 

 

 
 

(d) 
 

 

Fig.  2.1:  Propagation of disturbance waves a) V  = 0, b) V  = a/2, c) V  = a, d ) 
V > a. 

 

 
the direction of motion of the body is called the Mach angle µ. From Fig. 2.1(d), 
we have 

sin µ = 
at a 

= 
V t V 

(2.1) 

 

(2.2) 

 

1 
sin µ = 

M 
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2.2 Oblique shock waves 

The normal shock wave, as considered in the previous, is a special case of a more 
general family of oblique waves that occur in supersonic flow. Oblique shocks 
usually occur when supersonic flow is turned into itself as shown in Fig.  2.2(a) 
and Fig. 2.2(b). Stationary shock waves can either be normal or oblique to the flow 
direction. Necessary relations between the parameters across an oblique shock can 
be obtained directly from the equations of two-dimensional motion. However, the 
normal shock results can easily be transformed to obtain the appropriate relations. 

 

(a) (b) 

Fig. 2.2: Oblique shock wave produced on a) Concave corner b) Convex corner 

The geometry of flow through an oblique shock is given in Fig. 2.3. The 
velocity upstream of the shock is V1 , and is horizontal.The corresponding Mach 
number is M1. The oblique shock makes a wave angle β with respect to V1. Behind 
the shock, the flow is deflected toward the shock by the flow-deflection angle θ. 
The velocity and Mach number behind the shock are V2 and M2, respectively. 
The components of V1 perpendicular and parallel, respectively, to the shock are 
ul and w1; the analogous components of V2 are u2 and w2, as shown in Fig. 2.3. 
Therefore, we can consider the normal and tangential Mach numbers ahead of the 
shock to be Mn1, and Mt1, respectively; similarly, we have Mn2 and Mt2, behind 
the shock. 

Consider the control volume drawn between two streamlines through an oblique 
shock, as illustrated by the dashed lines at the top of Fig. 2.3. Faces a and d are 
parallel to the shock wave. Apply the integral continuity equation 1.49. The time 
derivative in Equ. 1.49 is zero. The surface integral evaluated over faces a and d 
of the control volume in Fig 2.3 gives 

 

ρ1u1A1 = ρ2u2A2 
 

Here, A1 = A2 = areas of faces a and d. The faces b, c, e, and f of the control 
volume are parallel to the velocity, and hence contribute nothing to the surface 
integral (i.e., V.dS = 0 for these faces). Thus, the continuity equation for an 
oblique shock wave is 

ρ1u1 = ρ2u2 (2.3) 
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Fig.  2.3: Oblique shock wave geometry 
 
 

 
From the integral form of momentum equation Equ. 1.52, considering the 

equation resolved into two components, parallel and perpendicular to the shock 
wave in Fig. 2.3 Again, considering steady flow with no body forces, the tangential 
component of Equ. 1.52 applied to the control surface in Fig. 2.3 yields (noting 
that the tangential component of p dS is zero on faces a and d, and that the 
components on b cancel those on f ; similarly with faces c and e). 

 
(ρ1u1) w1 + (ρ2u2) w2 = 0 (2.4) 

 

Deviding Equ. 2.4 by Equ. 2.4, we find that 
 

w1 = w2 (2.5) 
 

The above equation confirms that the tangential component of flow velocity is 
preserved across an oblique shock wave 

Now, applying the normal component of Equ. 1.52, we get 

(−ρ1u1) u1 + (ρ2u2) = − (−p1 + p2) 
 

p1 + ρ1u2 = p2 + ρ2u2 
 

(2.6) 
1 2 

 

Now considering the integral form of energy equation Equ. 1.56. Applied to 
the control volume in Fig. 2.3 for a steady adiabatic flow with no body forces, it 
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yields  
— (p1u1 + p2u2) = −ρ1 

 
e1 + 

 
V 2 

2 

 
u1 + ρ2 

 
e2 + 

 
V 2 

u2 
2 

V 2 
  

h1 +
  1   

2 

 
ρ1u1 = 

V 2 
  

h2 +
  2   

2 

 
ρ2u2 (2.7) 

Dividing the above equation by the continuity Equ. 2.3, 
 

V 2 V 2 

h1 +
  1   = h2 +

   2  
 (2.8) 

2 2 

However, in Fig. 2.3 we can see that V 2 = u2 + w2 and that w1 = w2. Hence, 

V 2 − V 2 = 
 

u2 + w2
 
−

 
u2 + w2

   
= u2 − u2 

 

(2.9) 
 

Therefore Equ. 2.8 becomes 

u2 u2 

h1 +
 1 

2 
= h2 +  2 

2 
(2.10) 

Observing Equ. 2.3 , Equ. 2.4 and Equ. 2.10, they are similar to the normal 
shock continuity, momentum and energy equation. Therefore, the changes across 
an oblique shock wave are governed by the normal component of the free-stream 
velocity. Furthermore. precisely the same algebra as applied to the normal shock 
equations in Sec.1.6 , when applied to Equ. 2.3 , Equ.  2.4 and Equ.  2.10.  will 
lead to identical expressions for changes across an oblique shock in terms of the 
normal component of the upstream Mach number Mn1. That is, for an oblique 
shock wave with 

Mn1 = M1 sin β (2.11) 

we find the flow properties around an oblique shock wave as 
 

ρ2 (γ + 1)Mn1
2 

= 
ρ1 (γ − 1)Mn1 

2 
+ 2 

(2.12) 

 

p2 2γ      
= 1 + Mn1 

p1 γ + 1 
2 

  
— 1 (2.13) 

 

 
 
 

and 

Mn2
2 = 

Mn1
2 + [2/(γ − 1)] 

 

[2γ/(γ − 1)]Mn1
2 − 1 

 

(2.14) 

T2 
= 

p2 ρ1 

T1 p1 ρ2 
(2.15) 

The Mach number behind the oblique shock, M2, can be found from Mn2 and 
the geometry of Fig. 2.3 as 

M  =
 Mn2  

sin(β − θ) 

 
(2.16) 

 

Note: In Sec.1.6, it was found that the changes across a normal shock are a 
function of only one component - the upstream Mach number. 
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From the Equ. 2.11 through Equ. 2.15, the changes across an oblique shock 
are a function of two quantitties - both M1 and β. We also see that, in reality 
normal shocks are a just a special case of oblique shocks where β = π/2. 

The Equ. 2.16 demonstrates that M2 cannot be found until the flow deflection 
angle θ is obtained. However, θ is a unique function of M1 and β. From the 
geometry in Fig. 2.3, 

 

 
and 

tan β = 
u1

 

w1 

u2 

(2.17) 

tan (β − θ) = 
w

 (2.18) 

 

combining Equ. 2.17 and Equ. 2.18, and noting that w1 = w2, we get 

tan (β − θ) 
= 

u2 

 

 
(2.19) 

tan β u1 
 

Combining Equ. 2.19 with Equ. 2.3, Equ. 2.11 and Equ. 2.12, we get 
 

tan (β − θ) 
tan β 

 2 + (γ − 1)M 2 sin2 β 

(γ + 1)M 2 sin2 β 

 

(2.20) 

 

Solving the above equation by conducting some trigonometric manipulation, 
the above equation can be expressed as 

 

(2.21) 
 
 

Equ. 2.21 is called the θ − β − M relation, and specifies θ a s a u nique function 
−1 1   

of M1 and β.  For example θ = 0 at β  = π  and β  = sin .  Within this 

range θ is positive and must therefore have a maximum.   For each value of M1, 
there is a maximum value of θ.  For θ < θmax, each value of θ and M corresponds 
to two possible solutions, having different values of β. The larger value of β gives 
a stronger shock. In the solution with strong shock, the flow becomes subsonic. 
With weak shock, the flow remains supersonic except for a small range of value of 
θ slightly smaller that θmax. 

 

tan (β − θ) 
tan β 

 2 + (γ − 1)M 2 sin2 β 

(γ + 1)M 2 sin2 β 

 

(2.22) 

 

  1 
= 

γ + 1 tan(β − θ) 
− 

γ − 1 

M 2 sin2 β 
or 

2 tan β 2 

M 2 sin2 β = 
γ + 1 

M 2  sin β sin θ 
  

1 2 1 cos(β − θ) 

M 2 sin2 β ≈ 
γ + 1 

M 2 tan β 
 

θ Forsmallvaluesofθ (2.23) 

 
 

  
2 2   

tan θ = 2 cot β    1  

M 2 (γ + cos 2β) + 2 
M sin β − 1 

1 

2 
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Fig. 2.4: θ − β − M curves. Oblique shock properties 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



High Speed Aerodynamics (R18A2113) 32 Dr. G. Srinivasan 
32 49  

1 − 

Chapter 2. Oblique Shock and Expansion Waves 
 

 

2.2.1 Supersonic flow over a wedge 

Any streamline in inviscid flow can be replaced by a solid boundary. Thus the 
oblique shock flow provides the solution to supersonic flow in a corner. For a given 
values of M1 and θ, the values of β and M2 are determined. Using symmetry, the 
flow over a wedge of nose angle 2θ is also obtained. The flow on each side of the 
wedge is determined only by the inclination of the surface on that side. Thus, the 
wedge need not be symmetric. When the shock waves are attached to the nose, 
the upper and lower surfaces are independent since there is no influence on the 
flow upstream of the waves. 

 

 

Fig. 2.5: Oblique shock over wedge and cone 
 
 
 

2.2.2 Mach Lines 

Assuming that downstream flow remain supersonic (M2 > 1), the wave angle β 
decreases with decrease in wedge angle. When θ decreases to zero, β decreases to 
the limiting value µ, given by 

 

M 2 sin2 µ 1 = 0 (or) µ = sin−1 
M 

(2.24) 

 

The jump in the flow quantities is then zero and, hence the strength of the 
wave is zero. The flow is continuous without any disturbance. There is nothing 
unique about the point where this wave originates; it might be any point in the 
flow. The angle µ is simply a characteristic angle associated with M1. It is called 
the ’Mach angle’. The lines of inclination µ which may be drawn at any point in 
the flow-field are called ’Mach lines’ or ’Mach waves’. 

In nonuniform flow µ varies with M and the Mach lines are curved. At any 
point P in a 2-D flow field, there are always two lines which intersect the streamline 
at the angle µ. In 3-D flow, the Mach lines or characteristics define a conical 
surface with vertex at P. A 2-D supersonic flow is always associated with two 
families of Mach lines called right running and left running characteristics and 
are often denoted by the labels (+) and (–). Those in the (+) set run to the 
right of the streamlines and those in the (–) set run to the left. They are called 
‘characteristics’ from the mathematical theory of hyperbolic PDEs. These are 
analogous to the two families of characteristics that trace the propagation of 1-D 

waves in the x − t plane. Like the characteristics in the x-t plane, Mach lines have 
 

 1  
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(a) 

(b) 
 
 

Fig. 2.6: Mach lines a) degeneration of Mach line as θ approaches 0 b) Left and 
Right running Mach lines at an arbitary point in the flow 

 

a distinguished direction, the direction of flow or the direction of increasing time. 
This is related to the fact that there is no upstream influence in supersonic flow. 

 

2.2.3 First-order approximation for weak oblique shocks 

For small deflection angles θ, the oblique shock equations reduce to very simple 
expressions. The approximate relation that can be used to derive others is 

 

M 2 sin2 β(β − 1) ≈ 
γ + 1 

M 2 tan β θ (2.25) 
 

For small θ, the value of β is close to either π or µ, depending on whether M2 < 1 
or M2 > 1. For M2 > 1, the approximation reduces to 

 

γ + 1 M 2 1 
M 2 sin2 β − 1 ≈ √ 1 θ, as tan β ≈ tan µ = √  (2.26) 

2 M 2 − 1 M 2 − 1 

The pressure is then approximated to 

p2 − p1 
p1 

= 
△p 

p 

 γM 2 
√ θ (2.27) 

M 2 − 1 
 

The changes in other flow quantities are also proportional to the deflection 
angle θ. The change of entropy is proportional to the third power of the shock 
strength and hence to third power of deflection angle 

△S∞θ3 (2.28) 

The difference between the wave angle β and the Mach angle µ, to first order 
accuracy, can be found as follows, Let β = µ + ǫ, ǫ << µ Hence, 

sin β = sin(µ + ǫ) ≈ sin µ + ǫ cos µ (2.29) 
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By definition,  
  1   

sin µ = , cot µ 
M1 

q   

M 2 − 1 

Hence,  
M1 sin β ≈ 1 + ǫ 

q   

M 2 − 1 

q   

M 2 sin2 β ≈ 1 + 2ǫ M 2 − 1 (2.30) 

 
M 2 sin2 β − 1 ≈ 2ǫ 

q   
M 2 − 1 ≈ 

 
γ + 1 

√ 1 

 

θ (2.31) 
1 1 2 

or 
γ + 1 M 2 

M 2 − 1 

ǫ = 1 θ (2.32) 
4 M 2 − 1 

Hence for a finite deflection angle θ, the direction of the wave differs from the 
Mach direction by an amount ǫ, which is of the same order as θ. 

The change in flow speed can be obtained as 
 

2 u2 + v2 
2 = 

  

 
u2

 2 
+ 1

 
=  v   

 

tan2(β θ) + 1 
= = 

 

cos2 β 
 

(2.33) 
 
 

Now, 

2 u2 + v2 u1 + 1 tan2 β + 1 cos2(β − θ) 

cos2 β = 1 − sin2 β = (2.34) 

similarly, cos2 β can be obtained by replacing ǫ with ǫ θ. The final result 
after dropping all terms of order θ2 and higher 

w2 θ  
≈ 1 − √ 

w θ  
or = −√ 

 
(2.35) 

w1 M 2 − 1 w1 M 2 − 1 
 

2.3 Supersonic compression by turning 

A shock wave passing through a fluid increases the pressure and density of the fluid. 
So, shock waves can be used to compress a flow. A simple method for compressing 
a supersonic flow is to turn it through an oblique shock by deflecting the wall 
through an angle θ. The turn may be subdivided into several segments which 
make smaller corners of angle θ so that compression occurs through successive 
weaker oblique shocks. These shocks divide the field near the wall into segments 
of uniform flow. In the near wall region each segment of the flow is independent of 
the next one and may be constructed step by step proceeding downstream. This 
property of limited upstream influence exists as long as the deflection does not 
become so great that the flow becomes subsonic. Away from the wall the shocks 
tend to intersect each other since they are convergent 

For each wave in the multiple shock   p   θ and   s   (   θ)3.  The overall 
pressure and entropy changes are 

pk − p1∞n△θ θ (2.36) 
 

w 

w 
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Fig. 2.7: Supersonic compression by turning 
 
 
 

sk − s1∞n(△θ)3 (n△θ)(△θ)2 θ(△θ)2 (2.37) 

Thus, when the compression is achieved through a large number of weak shocks, 
the entropy increase can be reduced significantly compared to a single shock giving 
the same net deflection. It decreases as 1 . By contnuing the process of subdivi- 
sion, the segments can be made vanishingly small ( θ 0), and in the limit, the 
smooth turn or isentropic compression is obtained. 

When the shocks become vanishingly weak, they are almost straight Mach lines. 
Each segment of uniform flow becomes vanishingly narrow and finally coincides 
with a Mach line. Thus, the flow inclination and Mach number are constant 
on each Mach line. Thus, in the limit of smooth flow, the flow velocities and 
inclination are continuous, but their derivatives may still be discontinuous. The 
approximate expression for the change of speed across a very weak shock 

 

w θ  
= −√ 

 

(2.38) 
w 

becomes the differential equation 

M 2 − 1 

dw dθ  
= −√ → θ = θ(M ) (2.39) 

w M 2 − 1 
 

Due to the convergence of the Mach lines, the change form M1 to M2 on 
the streamline b occurs in a shorter distance than on the streamline a. Hence, 
the gradients of velocity and temperature on b are higher than those on a. An 
intersection of Mach lines would imply an infinitely high gradient for there would 
be two values of M at one point. However, this cannot occur since in the region 
where Mach lines converge and the gradients become very high the conditions 
are no longer isentropic. Before the Mach lines cross a shock wave is developed. 
Far from the corner, there would be a simple oblique shock corresponding to M1 
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and θ. The convergence of Mach lines in a compression is a typical nonlinear 
effect: decreasing Mach number and increasing flow inclination both tend to make 
successive Mach lines steeper. 

If a wall is placed along one of the streamlines, say b, where the gradients are 
still small enough for the flow to be isentropic; then an isentropic compression 
in a curved channel is obtained. Since this flow is isentropic, it may be reversed 
without violating the second law of thermodynamics. 

 

2.4 Supersonic Expansion by Turning 

Flow round a ‘concave’ turn, that is turns in which the wall is deflected in to the  
flow, undergoes compression through shock wave/Mach lines. Expansion takes 
place in a flow over a convex corner. In this case a turn through a single oblique 
wave is not possible. 

 
 

 

(a) 
 

 

 

(b) 

(c) 
 
 

Fig.  2.8: Supersonic expansion by turning 
 

Since v1  = v2, u2  must be greater than u1 decrease in entropy. Hence 
expansion shocks are not possible. 

The non-linear mechanism that steepens a compression produces the opposite 
effect in expansion. Instead of being convergent, the Mach lines are divergent. 
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Fig.  2.9: Prandtl mayer expansion geometry 
 
 

Consequently, there is a tendency to decrease gradients. Thus an expansion is 
isentropic throughout. The expansion at a corner occurs though a centered wave 
defined by a fan of straight Mach lines. The flow up to the corner is uniform at 
Mach number M1 and thus the leading Mach wave must be straight at the Mach 
angle µ1.  The terminating Mach lines stands at the angle µ2 (corresponding to 
M2) to downstream wall. This centered wave is called a Prandtl-Meyer expansion 
fan. 

From Fig.   2.9, for a given M1, p1, T1 and θ1 the M2, p2 and T2 are needed 
to be calculated or predicted. The analysis can be started by considering the 
infinitesimal changes across a very weak wave produces by an infinitesimally small 
flow deflection, dθ. From the law of sines, 

 

V + dV 

V 

sin(π/2 + µ) 
= 

sin(π/2 − µ − dθ 
(2.40) 

 

However, from trignometric identies, 

 π 
sin + µ 

2 

 

= sin 
 π 

2 
− µ 

 

= cos µ (2.41) 

 

 
sin 

 π 

2 
− µ − dθ = cos (µ + dθ) = cos µ cos dθ − sin µ sin dθ (2.42) 

 

Solving above equations two equations into 2.40, we get 
 

dV 
1 + = 

V 

cos µ 
 

 

cos µ cos dθ − sin µ sin dθ 
(2.43) 
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For small dθ, we can make the small angle assumptions sin dθ dθ and cos dθ 1. 
The the above equation becomes 

 

dV 
1 + = 

V 

cos µ 
= 

cos µ − dθ sin µ 

1 
 

 

1 − dθ tanµ 
(2.44) 

Recalling the series expansion (for x < 1), 
 

1 
 

 

1 − x 
= 1 + x + x2 + x3 + ....... (2.45) 

Equ. 2.44 can be expanded as (ignoring terms of second and higher order) 
 

dV 
1 + = 1 + dθ   tan µ + ...... (2.46) 

V 
 

Thus from the above equation, 
 

dθ = 

However, we know that mach angle is 

dV/V 
 

 

tan µ 
 

 
1 

(2.47) 

 
 

which can be written as 

µ = sin−1 
M 

(2.48) 

1 

tan µ = √
M 2 − 1 

(2.49) 

Substituting the above equation into Equ. 2.47, we get 
 
 

(2.50) 

 

Equ. 2.50 is the governing differential equation for Prandtl-Meyer flow. 

To analyze the entire Prandtl-Meyer expansion in Fig. 2.9, Equ. 2.50 must be 
integrated over the complete angle θ2. Integrating Equ. 2.50 from regions 1 to 2, 

 

θ2 M2 

dθ = 
θ1 M1 

√
M 2 1 

dV 

V 

 

(2.51) 

 

The integral on the right hand side can be evaluated after dV/V is obtained 
in terms of M as ollows. From the definition of Mach number, 

 

V = Ma 
 

Hence, 
ln V  = ln M + ln a (2.52) 

Differentiating the above equation 

dV 

V 

 

 
dM da 

= + 
M a 

 
 

(2.53) 

 
 

✂ 
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For a calorically perfect gas the adiabatic energy equation can be written as 

 ao  
  2 To

 

= 
a T 

 
= 1 + 

γ − 1 
M 2

 

2 

 
(2.54) 

Solving for a,  
a 1 + 

γ − 1 
M 2 

o 2 

 −1/2 

(2.55) 

Differentiating the above equation, 

da 

a 
= − 

    
γ − 1 

M
 

2 
1 + 

γ − 1 

2 

 −1 

M 2 

 
dM (2.56) 

 

Substituting Equ. 2.56 into Equ. 2.53, we obtain 
 

dV 1 dM 

V 
= 

1 + γ−1 M 2 
(2.57) 

M 
 

The above equation is desired relation for dV/V in terms of M , substitute it 
into Equ. 2.51,  

θ2 
dθ = θ — 0 = 

✂
    

M2
 M 2 − 1 dM 

 

(2.58) 
2 

θ1 M1 1 + γ−1 M 2  M 

In the above equation, the integral 

✂ √
M 2 − 1 dM 

 ν(M ) = 1 + γ−1 M 2 (2.59) M 

is called the Prandtl-Meyer function, and is given the symbol ν. Performing 
the integration, the above equation becomes 

 

(2.60) 

 
The constant of integration that would ordinarily appear in the above equation 

is not important, because it drops out when the Equ.   2.60 is substituted into 
Equ. 2.58. For convenience, it is chosen as zero such that ν(M ) = 0 when M = 1. 
Finally, we can now write Equ. 2.58 combined with Equ. 2.59, as 

 

(2.61) 
 

From Fig. 2.9, Equ. 2.61 and Equ. 2.60 allow the calculation of a Prandtl- 
Meyer expansion wave. 

 

2.5 Simple and Non-simple regions 

The isentropic compression and expansion waves are distinguished by straight 
Mach lines with constant conditions on each one and by the simple relation be- 
tween flow deflection and Prandtl-Meyer function. A wave belongs to one of two 
families (+ or –), depending on whether the wall that produces it is to the left or 

 

r   

ν(M ) = 
γ + 1 

γ − 1 

r   

tan−1 
γ + 1 

γ − 1 

−1 
√ 

(M 2 − 1) − tan M 2 − 1 

ν(M2) − ν(M1) 

2 

✂ 
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Fig. 2.10: Regions in isentropic supersonic flow 
 
 

right of flow respectively. In the region where two simple waves of opposite family 
interact with each other,  the flow is non-simple.  The relation between ν  and θ 
is not the simple one given by ν = ν θ. These regions may be treated by the 
method of characteristics. 

 

2.6 Regular reflection of oblique shocks from a solid bound- 

ary 

Consider an oblique shock wave incident on a solid wall, as sketched in Fig. 4.18. 
Question: Does the shock wave disappear at the wall, or is it reflected downstream? 
If it is reflected, at what angle and what strength? The answer lies in the physical 
boundary condition at the wall, where the flow immediately adjacent to the wall 
must be parallel to the wall. In Figure 2.11 the flow in region 1 with Mach 
number M1 is deflected through an angle θ at point A. This creates an oblique 
shock wave that impinges on the upper wall at point B. In region 2 behind this 
incident shock, the streamlines are inclined at an angle θ to the upper wall. All 
flow conditions in region 2 are uniquely defined by M1 and θ through the oblique 
shock relations discussed earlier. At point B, in order for the flow to remain 
tangent to the upperwall, the streamlines in region 2 must be deflected downward 
through the angle θ. This can only be done by a second shock wave, originating at 
B, with sufficient strength to turn the flow through an angle 8, with an upstream 
Mach number of M2. This second shock is called a rejected shock; its strength 
is uniquely defined by M2 and θ, yielding the consequent properties in region 3. 
Because M2 < M1. the reflected shock wave is weaker than the incident shock, 
and the angle Φ it makes with the upper wall is not equal to β1(i.e., the reflected 
shock wave is not specularly reflected). 

 

2.7 Mach Reflection: 

The appearance of subsonic regions in the flow complicates the problem. The 
complications are also encountered in shock reflections, when they are too strong 
to give the simple reflections. If M2 after the incident shock is lower than the 
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Fig.  2.11: Shock reflection 
 
 
 
 
 

 

Fig.  2.12: Mach reflection 
 
 

 
detachment Mach number for θ, then no solution with simple oblique wave is 
possible. A three-shock Mach reflection appears that satisfies the downstream 
conditions. 

A normal, or, nearly normal, shock stem that appears near the wall forms 
a triple intersection point at O with the incident and reflected shocks. Due to 
the difference in entropy on streamlines above and below the triple point, the 
streamline that extends downstream from the triple point is a slipstream. The 
nearly normal shock is termed ‘shock stem’. 

The subsonic region behind the shock stem makes a local description of the 
configuration impossible. The triple point solution that occurs in a particular 
problem and the location of the triple point are determined by the downstream 
conditions which influence the subsonic part of the flow. 

 
2.8 Shock-Expansion  Theory 

Oblique shock wave and simple isentropic wave relations can be used to analyze 
many 2-D supersonic flow problems, particularly for geometries with straight seg- 
ments. 
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Fig. 2.13: Illustration of shock expansion theory for symmetrical diamond section 
 

 

2.8.1 Diamond-section airfoil: 

Consider a diamond section or double-wedge section airfoil with semi-vertex angle 
ǫ. Assume the semi-vertex angle to be sufficiently smaller than θmax associated 
with the free stream Mach number M1. An attached oblique shock appears at the 
nose that compresses the flow to pressure p2 

On the straight portion, downstream of the shock the flow remains uniform at 
M2. The centered expansion at the shoulder expands the flow to pressure p3 and 
the trailing edge shock recompresses it to nearly the free stream pressure (p4 p1 
). Hence, an overpressure acts on the forward face and an under-pressure acts on 
the rearward face. Since the pressure on the two straight portions is unequal, a 
drag force acts on the airfoil. This drag force is given by 

 

D = (p2 − p3) cos ǫ.t ≈ (p2 − p3)t perunitspan (2.62) 

Here t is the section thickness at the shoulder. Pressure values p2 and p3 can 
be obtained using the shock and expansion relations. This drag exists only in 
supersonic flow and is called ‘supersonic wave drag’. 

 

2.8.2 Flat plat at incidence 

Consider a flat plate of chord c set at an angle of attack . Due to no upstream 
influence, the streamlines ahead of the leading edge are straight and the upper 
surface flow is independent of lower surface. The flow on the upper surface turns 
at the nose through a centered expansion by the angle α whereas on the lower 
side the flow is turned through a compression angle α by an oblique shock. The 
reverse happens at the trailing edge. 

From the uniform pressures on the two sides, the lift and drag forces are 

L = (p3 − p2) c cos α (2.63) 

 
D = (p3 − p2) c sin α (2.64) 

The shock on the lower surface at the nose is weaker than the shock at the 
trailing edge on the upper surface (shock at higher Mach number). Hence, the 
increase in entropy for flow on the two sides is not same and consequently the 
streamline from the trailing edge is a slipstream inclined at a small angle relative 
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Fig. 2.14: Shock expansion theory flat plate 
 
 
 

 

Fig. 2.15: Illustation of shock expansion theory on curved airfoil section 
 

 
to the free stream. 

 

2.8.3 Curved airfoil section 

An attached shock forms at the nose. Subsequently, continuous expansion oc- 
curs along the surface. The flow leaves at the trailing edge through an oblique 

shock. For the shocks to be attached, it is required that nose and tail be wedge 
shaped with half angle less than θmax. Since the flow over the curved wall varies 
continuously, no simple expression for lift and drag forces is obtained in this case. 

If a larger portion of the flow field is considered, then the shocks and expansion 
waves will interact. The expansion fans attenuate the oblique shocks, making them 
weak and curved. At large distances they approach asymptotically the free-stream 
Mach lines. Due to the interaction the waves will reflect. The reflected wave 

system will alter the flow field. In shock-expansion theory, the reflected waves are 
neglected. For a diamond airfoil and a lifting flat plate, the reflected waves do not 
intercept the airfoil at all. Hence, the shock-expansion results are not affected. 
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Fig. 2.16: Atteneuation of wave by interaction around diamond section and flat 
plate 

 

 

2.9 Numerical Problems 

1. A uniform supersonic stream with M1 = 3.0, p1 = 1atm, and T1 = 288 K 
encounters a compression corner which deflects the stream by an angle θ = 
2.0. Calculate the shock wave angle, and p2, T2, M2, po2, and To2, behind 
the shock wave. 

 

 
 
 
 

Solution: From the θ − β − M chart, for M1 = 3 and θ = 200: 
 

 

Thus  
Mn1 = M1 sin β = 3 sin 37.80 = 1.839 

 

From Table A.2, for Mn1 = 1.839: 
 

p2 
= 3.783, 

T2 

p1 T1 
= 1.562, Mn2 = 0.6078, and 

po2
 

po1 
= 0.7948. 

 

Hence, 
p  = 

p2 
p 

p1 
= 3.783 × 1 = 

 

T = 
T2 

T 
T1 

= 1.562 × 288 = 

 
 

449.9 K 

3.783 atm 1 

1 

β = 37.80 
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  Mn2   0.6078 
M  = = = 

sin (β − θ) sin 17.8o 

From Table A.1, for M1 = 3: 

po1 

p1 
= 36.73 and 

To1
 

T1 
= 2.8 

Hence 

p = 
po2 po1 p 

 

  

 
 

= 0.7948 × 36.73 × 1 = 

o2 1 o1 1 

To2 = To1 = 
To1 
T = 2.8 × 288 = 

1 
 

2. Consider a horizontal supersonic flow at Mach 2.8 with a static pressure 
and temperature of 1 atm and 519oR, respectively. This flow passes over a 
compression corner with a defection angle of 16o . The oblique shock gener- 
ated at the corner propagates into the flow, and is incident on a horizontal 
wall. as shown in below figure. Calculate the angle Φ, made by the reflected 
shock wave with respect to the wall, and the Mach number, pressure, and 
temperature behind the reflected shock. 

 

 
 
 

Solution: From the θ − β − M diagram, β1 = 35o 

Mn1 = M1 sin β1 = 2.8 sin 35 = 1.606 

 
From Table A.2, for Mn1 = 1.606: 

 

p2 
= 2.82, 

T2 

p1 T1 
= 1.388 and Mn2 = 0.6684 

 

Hence 
  Mn2   0.6684 

M  = = = 2.053 
sin (β1 − θ) sin (35 − 16) 

From the θ − β − M chart, for M = 2.053 and θ = 16o: 

β2 = 45.5o 
 

p p 

806.4 K 

29.19 atm 

1.988 
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The component of the Mach number ahead of the reflected shock normal to 
the shock is Mn2, is given by 

Mn2 = M2 sin β2 = 2.053 × sin 45.5 = 1.46 

From Table A.2, for Mn2 = 1.46: 
 

p3 
= 2.32, 

T3 

p2 T2 
= 1.294, and Mn3 = 0.715 

 

Where Mn3 is the component of the Mach number behind the reflected shock 
normal to the shock. The Mach number in region 3 behind the reflected 
shock is given by 

 

  Mn3   0.7157 
M  = = = 1.45 

Also, 

sin (β2 − θ) sin (45.5 − 16) 

p = 
p3 p2 

p   = 2.32 × 2.82 × 1 = 6.54 atm 
p2 p1 

T  = 
T3 T2 

T   = 1.294 × 1.388 × 519 = 932 R 
T2 T1 

Φ = β2 − θ = 45.5 − 16 = 29.5 

3. A uniform supersonic stream with M1 = 1.5, p1 = 17001b/ft2, and T1 = 460o 
R encounters an expansion comer which deflects the stream by an angle 
θ2 = 20o. Calculate M2,p2, T2,po2, To2,and the angles the forward and 
rearward Mach lines make with respect to the upstream flow direction. 

 

 
 
 

Solution: 

From Table A.5, for M1 = 1.5: 
 

ν1 = 11.91o and µ1 = 41.81o 
 

So,  
ν2 = ν1 + θ1 = 11.91 + 0 = 31.91o 
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From Table A.5, for ν2 = 31.91o: 

M2 = 2.207 and µ2 = 26.95o 

From Table A.1, for M1 = 1.5: 
 

po1 

p1 
= 3.671 and 

To1
 

T1 
= 1.45 

 

From Table A.1, for M2 = 2.207: 
 

po2 

p2 
= 10.81 and 

To2
 

T2 
= 1.974 

 

The flow through an expansion wave is isentropic, hence po2 = po1 and 
To2 = To1. Thus, 

 p2 po2 po1 
p  = p 

   1  
= × 1 × 3.671 × 1700 = 

po2 po1 p1 10.81 

 
 T2 To2 To1 

T  = T 
   1  

= × 1 × 1.45 × 460 = 
To2 To1 T1 1.975 

 

po2 = po1 = 
po1 p 
p1 = 3.671 × 1700 = 

 

To2 = To1 = 
To1 
T = 1.45 × 460 = 

1 
 

Finally, 
Angle of forward Mach Line = µ1 = 

 

 

Angle of rearward Mach Line = µ2 − θ2 = 26.95 − 20 = 

4. Consider an infinitely thin flat plate at a 5o angle of attack in a Mach 2.6 
free stream. Calculate the lift and drag coefficients. 

Solution: From Table A.5, for M1 = 2.6: 

ν1 = 41.41o 

 
From the prandtl meyer function, Equ. 2.61, 

 

ν2 = ν1 + α = 41.41 + 5 = 46.41 

 
From table A.5, for ν2 = 46.41o: 

M2 = 2.85 
 

6.95o 

41.81o 

667o R 

6241 lb/ft2 

337.9o R 

577.3 lb/ft2 1 

1 

1 
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From Table A.1, for M1 = 2.6:  
po1 

p1 

 

 
= 19.95 

 

From Table A.1, for M2 = 2.85: 

 
 
 

Hence 

 
po2 

p2 

 

 
= 29.29 

p2 p2 po2 po1 
= 

p1 po2 po1 p1 

   1  
= 

29.29 
× 1 × 19.95 = 0.681 

 

From the θ − β − M chart, for M1 = 2.6 and θ = α = 5o: 

β = 26.5o 
 

Thus, 

Mn1 = M1 sin β = 2.6 × sin 26.5o = 1.16 
 

From Table A.2, for Mn1 = 1.16: 

p3 

p1 

 

 
= 1.403. 

 

The lift per unit span L′ is  
L′ = (p − p ) c cos α 

 

The drag per unit span D′ is 

D′ = (p3 − p2) c sin α 

Recalling, the dynamic pressure is given by q = (γ/2) p1M 2, we have 
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L′ 2 p p 
c = =    3 2 

− cos α 
q1c γM 2 p1 p1 

 

c  =
  2 

(1.403 0.681) cos 5o = 
1.4 × 2.62 

D′ 2 p p 
c  = =    3 2 

− sin α 
q1c γM 2 p1 p1 

 

c  =
  2 

(1.403 0.681) sin 5o = 
1.4 × 2.62 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0.0133 

0.152 
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∇ × 

∇ × 

∇× ∇ × / 
∇ × 

∂x 

 
 

 

Chapter 3 

Subsonic compressible flow over 

  airfoil  
 

 

3.1 Irrotational flow 

The vorticity is a point property of the flow, and is given by V . Vorticity is 
twice the angular velocity of a fluid element, = 2ω. A flow where V = 0 
throughout is called a rotaional flow.   In contrast, a flow where V = 0 
everywhere is called an irrotational flow. 

Irrotational flows are usally simpler to analyze than rotational flows, the ir- 
rotationality condition V = 0 adds an extra simplification to the general 
equations of motion. Consider an irrotational flow in more detail. In cartesian 
coordinates, the mathematical statement of irrotational flow is 

  
i j k 

∇ × V =  ∂  
 

 ∂ ∂  
∂y ∂z 

u v w 
  

∂w ∂v ∂w ∂u ∂v ∂u 
∇ × V = i ∂y 

− 
∂z 

− j
 ∂x 

− 
∂z + k 

∂x 
− 

∂y 
= 0 

For this equality to at every point in the flow, 

 
(3.1) 

 
Equ. 3.1 are called the irrotationality conditions. Now considering the Euler’s 

equations without body forces 
 

DV 
ρ 

Dt 
= −∇p 

For steady flow, the x component of this equation is 
 

∂u ∂u ∂u ∂p 
ρu

∂x 
+ ρv 

∂y 
+ ρw 

∂z  
= − 

∂x
 

or 
∂p ∂u ∂u ∂u 

 

From Equ. 3.1, 

− 
∂x

dx = ρu
∂x

dx + ρv 
∂y 

dx + ρw 
∂z 

dx (3.2) 

∂u ∂v 
= 

∂y ∂x 
and 

∂u ∂w 
= 

∂z ∂x 

∂w 

∂y ∂z 
= 

∂v ∂w 

∂x ∂z 
= 

∂u ∂v ∂u 

∂x ∂y 
= 
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Substituting the above relations into Equ. 3.2 we get 
 

∂p ∂u ∂v ∂w 
− 

∂x
dx = ρu

∂x
dx + ρv

∂x
dx + ρw 

∂x 
dx 

or 
∂p 1 ∂u2 1   ∂v2 1   ∂w2 

− 
∂x

dx = 
2 

ρ 
∂x 

dx + 
2 

ρ 
∂x 

dx + 
2 

ρ 
∂x 

dx (3.3) 

Similarly by considering the y and z components of Euler’s equation, 

∂p 1 ∂u2 1   ∂v2 1   ∂w2 
− 

∂y
dy = 

2 
ρ 

∂y 
dy + 

2 
ρ 

∂y 
dy + 

2 
ρ 

∂y 
dy (3.4) 

∂p 1 ∂u2 1   ∂v2 1   ∂w2 
− 

∂z
dz = 

2 
ρ 

∂z 
dz + 

2 
ρ 

∂z 
dz + 

2 
ρ 

∂z 
dz (3.5) 

Adding all the above three equations, we get 
  

∂p ∂p 1 ∂V 2 1 ∂V 2 1   ∂V 2 
dx + dz 

∂x ∂z 
= ρ dx + ρ 

2 ∂x 2 
dy + ρ 

∂y 2 
dz (3.6) 

∂z 

Where V 2 = u2 + v2 + w2. 

Equ. 3.6 is in the form of perfect differentials, and can be written as 

1 
−dp = 

2 
ρd(V 

or 

 
2) (3.7) 

 

(3.8) 

 

3.2 Potential flow equation 

The general conservation equations derived in previous chapter are simplified for 
the special case of irrotational flow. It allows the separate continuity, momen- 
tum and energy equations with the requisite dependent variables ρ, p, T, V etc to 
cascade into one governing equation with one dependent variable new defined as 
velocity potential. 

For irrorational flow, V = 0. Hence, we can define a scalar function, 
Φ = Φ(x, y, z), such that 

V = ∇Φ 

where Φ is called the velocity potential. In cartesian coordinates, since 
 

V = ui + vj + wk 

(3.9) 

 

and 
 
 

then, by comparision, 

 

∇Φ = 

 
∂Φ 

 
∂Φ ∂Φ ∂Φ 

i + j + k 
∂x ∂y ∂z 

 
 

∂Φ ∂Φ 
u = v = w = 

∂x ∂y ∂z 
(3.10) 

 
 

dp = −ρV dV 

− 
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Hence, if the velocity potential is known, the velocity can be obtained directly 
from the above equations. 

As derived next, the velocity potential can be obtained from a single partial 
differential equation which physically describes an irrotational flow. In addition. 
we will assume steady, isentropic How. For simplicity, we will adopt subscript 
notation for derivatives of Φ as follows: ∂Φ/∂x = Φx, ∂Φ/∂y = Φy and ∂Φ/∂z = 
Φz. 

The continuity equation for steady flow is 

∇.(ρV ) = 0 
 

∂(ρu) 
 

 

∂x 
∂ 

∂(ρv) 
+ 

∂y 
∂ 

∂(ρw) 
+ = 0 

∂z 
∂ 

∂x
ρΦx + 

∂y
ρΦy + 

∂z
ρΦz = 0 

 

∂ρ ∂ρ ∂ρ 
ρ(Φxx + Φyy + Φzz) + Φx 

∂x 
+ Φy 

∂y 
+ Φz 

∂z 
= 0 (3.11) 

Since, we are striving for an equation completely in terms of Φ, we eliminate 
ρ from Equ. 3.11 by using Euler’s equation in the form of Equ. 3.8, which for an 
irrotational flow applies in any direction: 

dp = −ρV dV = − 
ρ

d(V 2) = − 
ρ

d(u2 + v2 + w2) 
2 

 
 

dp = −ρd 

2 

 
 

Φ2  + Φ2  + Φ2 

2 

 
 
 

(3.12) 

From the speed of sound, a2 = (∂p/∂ρ)s, Recalling the flow is isentropic, any 
flow change in pressure dp in the flow is followed by a corresponding change in 
density, dρ. Hence,  

dp ∂p 
= 

dρ ∂ρ 

 
= a2 

s 

dρ = 

Combining Equ. 3.12 and Equ. 3.13, 

dp 

a2 
(3.13) 

ρ 
dρ = − 

a2
 

 
Φ2  + Φ2  + Φ2 

2 

 
(3.14) 

 

Considering changes in the x direction, the above equation yields, 
 

∂ρ ρ 
= − 

∂   
  

Φ2 + Φ2 + Φ2 
 

  (3.15) 
∂x 

or 
∂ρ ρ 

a2 ∂x 2 

∂x 
= − 

a2  
(ΦxΦxx + ΦyΦyx + ΦzΦzx) (3.16) 
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Similarly, 

∂ρ ρ 

∂y  
= − 

a2  
(ΦxΦxy + ΦyΦyy + ΦzΦzy) (3.17) 

 

∂ρ ρ 

∂z  
= − 

a2  
(ΦxΦxz + ΦyΦyz + ΦzΦzz) (3.18) 

Substituting Equ. 3.16 through Equ. 3.18 into Equ. 3.11, canceling the ρ that 
appears in each term, and factoring out the second derivative of Φ, we get 

(3.19) 
Equ. 3.19 is called the velocity potential equation. Equ. 3.19 is not strictly in 

terms of Φ only, the variable speed of a sound a still appears. We need to express 
a in terms of Φ. From the energy equation, 

 

ho = constant 
 

For a callorically perfect gas, the energy equation can be expressed as 

V 2 

cpT + 
2  

= cpTo 

γRT V 2 
+ 

γ − 1 2 
= 

γRTo 

γ − 1 

a2 

γ − 1 

V 2    
+ u2 

2 
+ v2 + w2

 
 
 

 

 

(3.20) 
 

Since ao is a known constant of the flow, the above equation gives the speed 
of sound a as a function of Φ. 

Equ. 3.19 coupled with Equ. 3.20 represents a singlee equation for the un- 
known variable Φ. Equ. 3.20 represents a combination of continuity, momentum 
and energy equations. This leads to a general procedure for the solution of irro- 
tational, isentropic flowfields: 

❼   Solve for Φ from Equ. 3.19 and Equ. 3.20 for the specified boundary condi- 
tions of the given problem. 

❼   Calculate u, v and w from Equ. 3.10, Hence V = 
√

u2 + v2 + w2. 

❼    Calculate a from Equ. 3.20. 

❼   Calculate M = V/a. 

❼    Calculate T , p and ρ from Equ. 1.82, Equ. ?? and Equ. ?? respectively. 

Hence, we see that once Φ = Φ(x, y, z) is obtained, the whole flowfield is known. 
This shows the importance of Φ. The Equ. 3.19 combined with Equ. 3.20 is a non- 
linear partial differential equation. It applies to any irrotational, isentropic flow: 

 

a = a − 
2 2 

o 
γ − 1   

2 
Φ2 + Φ2 + Φ2 

  
x y z 

  
2   

  ! 

1 − 
Φx 

2 
Φxx + 1 − 

a2
 

    y Φ 2   

Φyy + 1 − 
a2 

Φzz − 
Φz 2   2ΦxΦy 

a2 Φxy − 
2ΦxΦz 

a2 
ΦΦxz − 

2ΦyΦz 

a2 
Φyz = 0 
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subsonic, transonic, supersonic or hypersonic. It also applies to incompressible 

flow, where a → ∞, hence yielding the Laplace’s equation 

Φxx + Φyy + Φzz = 0 

 

3.3 Linearized velocity potential 

Transport yourself back in time to the year 1940, and imagine that you are an aero- 
dynamicist responsible for calculating the lift on the wing of a high-performance 
fighter plane. You recognize that the airspeed is high enough so that the wellestab- 
lished incompressible flow techniques of the day will give inaccurate results. Com- 
pressibility must be taken into account. However. you also recognize that the 
governing equations for compressible flow are nonlinear, and that no general so- 
lution exists for these equations. Numerical solutions are out of the question high-
speed digital computers are still 15 years in the future. So, what do you do? The 
only practical recourse is to seek assumptions regarding the physics of the flow, 
which will allow the governing equations to become linear, but which at the same 
time do not totally compromise the accuracy of the real problem. In turn. these 
linear equations can be attacked by conventional mathematical techniques. 

In this context, it is easy to appreciate why linear solutions to flow problems 
dominated the history of aerodynamics and gasdynamics up to the middle 1950s. 
In modern compressible flow, with the advent of the high-speed computer, the 
importance of linearized flow has been relaxed. Linearized solutions now take their 
proper role as closed-form analytic solutions useful for explicitly identifying trends 
and governing parameters, for highlighting some important physical aspects of the 
flow, and for providing practical formulas for the rapid estimation of aerodynamic 
forces and pressure distributions. In modern practice, whenever accuracy is desired 
the full nonlinear equations are solved numerically on a computer, as described in 
aubsequent chapters. 

Consider a slender body immersed in a uniform flow. In the uniform flow, the 
velocity is V∞ and is oriented in the x direction. In the perturbed flow, the local 
velocity is V , where V = Vxi + Vyj + Vzk, where Vx, Vy and Vz are now used to 
denote the x, y and z components of velocity, respectively. In this chapter u′, v′ 
and w′ denote perturbations from the uniform flow, such that 

Vx = V∞ + u′ 

Vy = v′ 

Vz = w′ 

Here, u′, v′ and w′  are the perturbation velocities in the x, y and z directions. 
In the perturbed flow, the pressure, density and temperature are p, ρ and T , 
respectively. In uniform stream, Vx = V∞, Vy = 0 and Vz = 0. Also in the unifrom 
stream, the pressure, density and temperature are p∞, ρ∞ and T∞. 

In terms of velocity potential 

∇Φ = V = (V∞ + u′) i + v′j + w′k 

where Φ is now denoted as the ”total velocity potential”. The perturbation 
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velocity potential φ is defined as 

∂φ 
= u′ 

∂φ 
= v′ 

∂φ 
= w′ 

∂x ∂y ∂z 

Then, 
Φ(x, y, z) = V∞x + φ(x, y, z) 

where 

Vx = V∞ + u′ = 
∂Φ 

= V∞ + 
∂φ

 
∂x ∂x 

V  = v′ = 
∂Φ 

= 
∂φ

 
  

y ∂y ∂y 

V  = w′ = 
∂Φ 

= 
∂φ

 
  

 
Also, 

z ∂z ∂z 
 

∂2φ 
Φxx = 

∂x2
 

∂2φ 
Φyy = 

∂y2
 

∂2φ 
Φzz =   

∂z2 

Considering the velocity potential Equ. 3.19. Multiplying it by a2 and sustituting 
Φ = V∞x + φ, we get 

" 

a2 − 

 

∂φ 
V∞ + 

∂x 

 2
#  

∂2φ 

∂x2 
+

 

" 

a2 − 

2    2
# 

∂φ 
∂y 

 
∂2φ 

∂y2 
+

 

" 

a2 − 

2   2
# 

∂φ 
∂z 

 

∂2φ 

∂z2 

  
∂φ ∂φ ∂2φ 

  
∂φ ∂φ ∂2φ ∂φ ∂φ ∂2φ 

2 V∞ + 
∂x ∂y ∂x ∂y 

− 2
 

V∞ + 
∂x ∂z ∂x ∂z 

− 2 
∂y ∂z ∂y ∂z 

= 0
 

(3.21) 
 

The above equation is called the perturbation-velocity potential equation. Re- 
casting the above equation in terms of velocities 

 
′ 

a2 − (V∞ + u′)2 + [a2 − v′2] ∂v′ 
 

 
+ [a2 − w′2] ∂w′ 

 

 

∂x 
′ ′ ∂u′ 

∂y 
′ ′ ∂u′ 

∂z 
′    ′ ∂v′ (3.22) 

−2(V∞ + u )v 
∂y 

− 2(V∞ + u )w 
∂z 

− 2v w 
∂z 

= 0 
 

Since the total enthalpy is constant throughout the flow, 

 
h∞ + 

 
or 

 
2 2 

∞ 
= h + 

2 2 

 
= h + 

(V∞ + u′)2 + v′2 + w′2 
 

 

2 

2 
∞ + 

γ − 1 

2 2 
∞ = + 
2 γ − 1 

(V∞ + u′)2 + v′2 + w′2 
 

 

2 
 

a2 = a2 
γ − 1 

(2u′V∞ + u′2 + v′2 + w′2) (3.23) 
2 

 
 

V 

a V 

− 

− 
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∞ 

∞ 
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2 

2 
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Substituting Equ. 3.23 into Equ. 3.22 and rearranging,  
(1 − M 2 ) 

 
∂u′ 

 

 

 

∂v′ 
+ 

 
∂w′ 

+ 
∂x ∂y 

     
∂z 

 
= M 2 u′ 

(γ + 1) + 
 

 

γ + 1 u′2 
+ 

 

 

γ − 1  
      

v′2 + w′2 ∂u′ 
 

  

∞ 
 
 

+M 2 

V∞ 

u′ 

(γ + 1) + V∞ 

2 

γ + 1 
 

 2 

2 
∞ 

v′2 

V 2 
+ 

2 

γ − 1 
 2 

2 
∞ 

w′2 + u′2 
 

 

V 2 

∂x 

∂v′ 
 

 ∂y 
 

+M 2 
u′ 

(γ + 1) + V∞ 
γ + 1 

 

 2 

∞ 

w′2 

V 2 
+ 

γ − 1 
 2 

∞ 

u′2 + v′2 
 

 

V 2 
∂w′ 

 

 ∂z 

v′ u′ ∂u′ ∂v′ w′ 
∞ 

u′ ∂u′ ∂w′ u′w′ 
∞ 

∂w′ ∂v′ 
+M 2    1 + + + 1 + 

 

   

+ + + 
 

     ∞ 
V∞ V∞ ∂y ∂x V∞ V∞ ∂z ∂x 2 ∂y ∂z 

(3.24) 
 

Equ. 3.24 is still an exact equation for irrotational, isentropic flow. It is simply 
an expanded form of the perturbation-velocity potential equation. Note that the 
left-hand side of Equ.  3.24 is linear, but the right-hand side is not.  Also recall 
that we have not said anything about the size of the perturbation velocities u′, v′ 
and w′. Now, assume u′, v′ and w′ are small compared to V∞: 

u′ v′ 
, 

V∞  V∞ 

 
w′ 

and 
V∞ 

 
<< 1 

  
u′     

  2 

 
 

V∞ 

  
v′     

  2 

, 
V∞ 

 
and 

  
w′    

  2 

 
 

V∞ 

 
<<< 1 

 

❼   For 0 ≤ M∞ ≤ 0.8 and M∞ ≥ 1.2, the magnitude of 

2 (γ + 1) 
u

 
V∞ 

 
+ ......... 

  
∂u′ 

 
 

∂x 
 

is small in comparision to the magnitude of 
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Thus ignore the former term 

(1 M 2 ) 
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❼   For M∞ ≤ 5 (approx),  
u′ 
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Thus, ignore these terms in comparision to the left hand side of Equ. 3.24, 
with these order-of-magnitude comparisions, Equ. 3.24 reduces to 

(1 − M 2 ) 
∂u′ 

 

 

∂x 

∂v′ 
+ 

∂y 

∂w′ 
+ 

∂z 

 
(3.25) 

 

or in terms of the perturbation velocity potential, 
 

(3.26) 
 

The Equ. 3.26 is the Linearized velocity potential equation. 

 

3.4 Linearized pressure Coefficient 

The pressure co-efficient cp is defined as 
 

C  = 
p − p∞ 

p 1 ρ∞V 2 
2 ∞ 

 

where p is the local pressure, and p∞, ρ∞ and V∞ are the pressure, density and 
velocity respectively. An alternative form of the pressure coefficient, convenient 
for compressible flow, can be obtained as follows: 

 

1 
ρ∞V 2 

2 

1 γp∞ 
= 

2 γp∞ 
ρ∞V 2 

γ 
= p∞ 

2 

2 

∞ = p∞M 2 
∞ 

 

(3.27) 

 

Hence Equ. 3.4 becomes 
 

C  =
 p − p∞ 

= 
p∞(p/p∞ − 1)  

(3.28) 
 
 

Hence, 

p (γ/2)p∞M 2 (γ/2)p∞M 2 

 
 

 

 
 

 
(3.29) 

 

We now proceed to obtain approx expression for Cp that is constant with 
linearized theory. Since the total enthalpy is constant, 

 

2 2 
∞ 

h + = h∞ + 
2 2 

For a calorically perfect gas, the above equation becomes 
 

V 2 

T + 
2cp 

 

= T∞ + 
2 

∞ 
 

2cp 

 

(3.30) 

 

T − T∞ = 
V 2 − V 2 

2cp 

2 2 
∞ = (3.31) 

2γR/(γ − 1) 

T γ − 1 V 2 − V 2 γ − 1 V 2 − V 2 

T∞  
− 1 = 

2
 

= 
γRT∞ 2 2 

(3.32) 

 
 

(1 − M   ) + 
2 ∂2φ ∂2φ ∂2φ 
∞ 

∂x 2 ∂y 2 
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Since 

 
Equ. 3.32 becomes 

 
V 2 = (V∞ + u′)2 + v′2 + w′2 

 
 T   

= 1 − 
γ − 1 

(2u′V∞ + u′2 + v′2 + w′2) (3.33) 
 

Since the flow is isentropic, p/p∞ = (T/T∞)γ/(γ−1), and the above equation 
becomes  

  p   
=  1 

γ − 1 

p∞  2a2 

 
2u′V∞ + u′2 + v′2 + w′2 

 
 γ/(γ−1)  

(3.34) 

or ′ ′2 ′2 ′2        γ/(γ−1) 

  p 
= 1 − 

γ − 1 
M 2

 
2u u   + v + w  

+ (3.35) 
 

Equ. 3.35 is an exact expression.  However, considering small perturbations: 
u′/V∞ << 1 :  u′2/V 2 , and w′2/V 2 <<< 1.  Hence the above equation is of the 

∞ ∞ 

form p 
 

 

 
 

γ/(γ−1) 

p∞ 
= (1 − ǫ) 

where ǫ is small. Hence from the binomial expresion, neglecting higher order 
terms, 

p γ 

p∞   
= 1 − 

γ − 1 
ǫ + ................ (3.36) 

Thus Equ. 3.35 can be expressed in the above form of equation and neglecting 
higher order terms: 

p 
= 1 − 

γ 2u′ 
M 2    + 

 

  

u′2 + v′2 + w′2 
  

 

 

  

 
+ ........... (3.37) 

 

Substitute the aboveequation into Equ. 3.4 gives 

2 Cp = γ 2u′ 1 − M 2    + 
 

 

 

 

u′2 + v′2 + w′2 
  

 
 

  

+ ........... − 1 
 

(3.38) 

γM 2 
∞ 2 
2u′ 

V∞ ∞ 

 
u′2 + v′2 + w′2 

Cp = − 
V∞ 

− 

Negelecting small terms 

2 
+ .............. (3.39) 

∞ 
 
 

(3.40) 
 
 

3.5 Prandtl-Glauert compressibility corrections 

Consider the compressible subsonic flow over a thin airfoil at small angle of attack 
(hence small perturbations). The usual inviscid flow boundary condition must 
hold at the surface, i.e., the flow velocity must be tangent to the surface. 

 

df v 
= 

dx V∞ + u 
= tan θ 

 
 

2 V ∞ 

2 
∞ V V∞ 2 

2u′ 
Cp = − 
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V∞ 2 
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p∞ 



High Speed Aerodynamics (R18A2113) 60 Dr. G. Srinivasan 
60 77  

Chapter 3. Subsonic compressible flow over airfoil 
 

 

 

 

Fig. 3.1: Definition of critical Mach number. Point A is the location of minimum 
pressure on the top surface of the airfoil. 

 
 
 
 

 
(3.41) 

 

 

(3.42) 
 

 

(3.43) 
 

 

3.6 Critical Mach number 
 

At high-subsonic flight speeds, the local speed of the airflow can reach the speed of 
sound where the flow accelerates around the aircraft body and wings. The speed at 
which this development occurs varies from aircraft to aircraft and is known as the 
critical Mach number. The resulting shock waves formed at these points of sonic 
flow can greatly reduce power, which is experienced by the aircraft as a sudden 
and very powerful drag, called wave drag. To reduce the number and power of 
these shock waves, an aerodynamic shape should change in cross sectional area as 
smoothly as possible. 

The critical Mach number can be evaluated as follows 

 
1 + γ−1 M 2   

!γ/(γ−1) 
pA   2 ∞ 
p 

= 
1 + γ−1 M 2 (3.44) 

B 

  
2 1 + 

2 A 

 

γ−1 M 2 
!γ/(γ−1)  

CpA =  γM 2 
  2 ∞ 

1 + γ−1 M 2 — 1  (3.45) 
∞ 2 A 

 

Cp = √ 
Cpo 

1 − M ∞ 
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Drag divergence Mach number 
 

 
 

 
 

 
Setting MA = 1, M∞ = Mcr, and Cp = Cpcr, we get 

 
 
 

 
 

 
(3.46) 

 
 
 

3.7 Drag divergence Mach number 

The drag divergence Mach number (not to be confused with critical Mach number) 
is the Mach number at which the aerodynamic drag on an airfoil or airframe begins 
to increase rapidly as the Mach number continues to increase. This increase can 
cause the drag coefficient to rise to more than ten times its low speed value. 

The value of the drag divergence Mach number is typically greater than 0.6; 
therefore it is a transonic effect. The drag divergence Mach number is usually 
close to, and always greater than, the critical Mach number. Generally, the drag 
coefficient peaks at Mach 1.0 and begins to decrease again after the transition into 
the supersonic regime above approximately Mach 1.2. 

The large increase in drag is caused by the formation of a shock wave on the 
upper surface of the airfoil, which can induce flow separation and adverse pressure 
gradients on the aft portion of the wing. This effect requires that aircraft intended 
to fly at supersonic speeds have a large amount of thrust. In early development 
of transonic and supersonic aircraft, a steep dive was often used to provide extra 
acceleration through the high drag region around Mach 1.0. This steep increase in 
drag gave rise to the popular false notion of an unbreakable sound barrier, because 
it seemed that no aircraft technology in the foreseeable future would have enough 
propulsive force or control authority to overcome it. Indeed, one of the popular 
analytical methods for calculating drag at high speeds, the Prandtl-Glauert rule, 
predicts an infinite amount of drag at Mach 1.0. Two of the important technologi- 
cal advancements that arose out of attempts to conquer the sound barrier were the 
Whitcomb area rule and the supercritical airfoil. A supercritical airfoil is shaped 
specifically to make the drag divergence Mach number as high as possible, allow- 
ing aircraft to fly with relatively lower drag at high subsonic and low transonic 
speeds. 

 



High Speed Aerodynamics (R18A2113) 62 Dr. G. Srinivasan 
62 79  

∞ 

Chapter 3. Subsonic compressible flow over airfoil 
 

 

3.8 Area rule 

The Whitcomb area rule, also called the transonic area rule, is a design technique 
used to reduce an aircraft’s drag at transonic and supersonic speeds, particularly 
between Mach 0.75 and 1.2. The area rule says that two airplanes with the same 
longitudinal cross-sectional area distribution have the same wave drag, indepen- 
dent of how the area is distributed laterally (i.e. in the fuselage or in the wing). 
Furthermore, to avoid the formation of strong shock waves, this total area distri- 
bution must be smooth. As a result, aircraft have to be carefully arranged so that 
at the location of the wing, the fuselage is narrowed or ”waisted”, so that the total 
area does not change much. Similar but less pronounced fuselage waisting is used 
at the location of a bubble canopy and perhaps the tail surfaces. 

 

3.9 Supercritical  airfoil 

A supercritical airfoil is an airfoil designed, primarily, to delay the onset of wave 
drag in the transonic speed range. Supercritical airfoils are characterized by their 
flattened upper surface, highly cambered (”downward-curved”) aft section, and 
larger leading edge radius compared with NACA 6-series laminar airfoil shapes. 
Standard wing shapes are designed to create lower pressure over the top of the 
wing. The camber of the wing determines how much the air accelerates around 
the wing. As the speed of the aircraft approaches the speed of sound the air 
accelerating around the wing will reach Mach 1 and shockwaves will begin to 
form. The formation of these shockwaves causes wave drag. Supercritical airfoils 
are designed to minimize this effect by flattening the upper surface of the wing. 

 

3.10 Numerical Problems 

1. The low-speed lift coefficient for an NACA 2412 airfoil at an angle of attack 
of 40 is 0.65. Using the Prandtl-Glauert rule, calculate the lift coefficient for 
M∞ = 0.7. 

Solution: Given 
α = 4o 

M∞ = 0.65 
 

We know, 
  cl,0   0.65 

c  = √ = √ 
 

 
= 1.275 

l 

1 − M 2 1 − 0.72 
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Fig. 3.2: Conventional (1) and supercritical (2) airfoils at identical free stream 
Mach number. Illustrated are: A, Supersonic flow region; B, Shock wave; C, Area 
of separated flow. The supersonic flow over a supercritical airfoil terminates in a 
weaker shock, thereby postponing shock-induced boundary layer separation. 
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Fig. 3.3: Supercritical airfoil Mach Number/pressure coefficient diagram. The 
sudden increase in pressure coefficient at midchord is due to the shock. (y- 
axis:Mach number (or pressure coefficient, negative up); x-axis: position along 
chord, leading edge left) 
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Chapter 4 

Linearized Supersonic Flows and 
Hypersonic Flows 

 

 

4.1 Linearized supersonic pressure co-efficient 

The linearized perturbation-velocity potential equation for two dimensional flows 
derived in the previous chapter is repeated here which is of the form 

 

β2φxx + φyy = 0 (4.1) 
√   

For subsonic flow, where β = 1 − M 2 , and the form of 

λ2φxx − φyy = 0 (4.2) 
√   

for supersonic flow, where λ = 2  − 1. The difference between Eqs 4.1 and 4.2 
is fundamental, for they are elliptic and hyperbolic partial differential equations, 
respectively. 

Consider the supersonic flow over a body or surface which introduces small 
changes in the flowfield, i.e., flow over a thin airfoil, over a mildly wavy wall, or 
over a small hump in a surface as sketched in Figure 4.1. 

 

Fig.   4.1: Linearized supersonic flow over a bump 
 
 

The Equ. 4.2, which governs the flow is of the form of the classical wave 
equation. Its general solution is 

φ = f (x − λy) + g (x + λy) (4.3) 

which can be verified by direct substitution into Equ. 4.2. Examining the 

particular solution where g =0, and hence φ = f (x − λy), we see that lines of 
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constant φ correspond to x − λy = const, or 

dy 1 1 
= = √ (4.4) 

dx λ 2  − 1 

Recalling that the Mach ang;e µ = arcsin (1/M∞), we see that lines of constant φ 
are the family of left-running Mach lines as sketched in upper half of Figure 4.1. 
In turn if f = 0 in Equ.4.1, then lines of constant φ are the family of right-running 
Mach lines shown in lower half of Figure. 4.1. 

Returning to Equ. 4.2, letting g = 0, we have 

φ = f (x − λy) (4.5) 
 

Hence, 
 
 

and 

u′ = 
∂φ 

= f ′ (4.6) 
∂x 

 

v′ = 
∂φ 

= λf ′ (4.7) 
∂y 

 

where f ′ reprents the derivative with respect to the argument, (x λy). Comb- 
ing the above two equations, we get 

′ v′ 

u  = − 
λ 

(4.8) 

 

The slope of the left running Mach waves can be calculated as 

dy v′ 
tan θ = 

dx 
= 

V∞ + u′ 
(4.9) 

For small perturbations, u′ << V∞ and tan θ θ. Hence, the above equation 
becomes 

v′ = V∞θ (4.10) 
 

Substituting Equ. 4.10 into 4.8, 

u′ = 
V∞θ 

λ 

 

 
(4.11) 

 

Recalling subsonic linearized pressure coefficient 

2u′ 
Cp = − 

V∞ 
(4.12) 

Therefore from Equs 4.12 and 4.11, the pressure coefficient on the surface is 

2u′ 2θ 
Cp = − 

V∞  
= 

∞ 
(4.13) 

 

M 
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or 

 
(4.14) 

 

Equation 4.14 is an important result. It is the linearized supersonic surface 
pressure coefficient, and it states that Cp is directly proportional to the local 
surface inclination with respect to the free stream. It holds for any slender two- 
dimensional shape. For example, consider the biconvex airfoil shown in Fig. 4.2. 
At two arbitrary points A and B on the top surface, 

  2θA  C = √ 
 

 
and C   2θB  = −√ 

 

 

 

 
(4.15) 

pA 

respectively. 

2  − 1 pB 
∞ − 1 

 
 

 
 

Fig.   4.2: Schematic of the lineari edp ressure coefficient over a biconvex airfoil 
 

 
The contrast between subsonic and supersonic flows can be seen by comparing 

Equs. 4.12 and 4.14. In subsonic flow, Equ.  4.12 shows that Cp increases when 
M∞ increases. However, for supersonic flow, Equ. 4.14 shows that Cp decreases 
when 

 

4.2 Hypersonic Flows 

In general words the flows with Mach number higher than 5 are categorized under 
hypersonic flows. However, hypersonic flow is best defined as that regime where 
certain physical flow phenornena become progressively more important as the 
Mach number is increased to higher values. In some cases, one or more of these 
phenomena may become important above Mach 3, whereas in other cases they 
may not be compelling until Mach 7 or higher. 

 

4.2.1 Qualitative aspects of Hypersonic flows 

The qualities of hypersonic flows can be listed as below: 
 

1. Thin Shock layers 
 

2 

Cp = −√ 
   2θ  

M − 1 ∞ 
2 

M M 
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Fig. 4.3: Variation of the linearized preswre coefficient with Mach number. 
 
 

2. Entropy layer 

 
3. Viscous interaction 

 
4. High-Temperature flows 

 

4.2.1.1 Thin shock layer 

For flow over a hypersonic body, the distance between the body and the shock 
wave is very small. The flowfield between the shock wave and the body is defined 
as the shock layer,  and for hypersonic speeds this shock layer is usually quite 
thin. For example, consider the Mach 36 flow of a calorically perfect gas with 
a ratio of specific heats, γ = cp/cv = 1.4, over a wedge of 15o half-angle. From 
standard oblique shock theory the shock wave angle will be only 18o as shown in 
Figure. 15.3. If high-temperature, chemically reacting effects are included, the 
shock wave angle will be even smaller.  Clearly, this shock layer is thin.  It is a 
basic characteristic of hypersonic flows. 

 
 
 

 

Fig.  4.4: Illustration of a thin shock layer at hypersonic Mach numbers 
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4.2.1.2 Entropy Layer 

Consider the wedge shown in Figure. 4.4, except now with a blunt nose, as sketched 
in Figure. 4.5. 15.4. At hypersonic Mach numbers, the shock layer over the 
blunt nose is also very thin, with a small shock detachment distance d. In the 
nose region, the shock wave is highly curved. Recall that the entropy of the 
flow increases across a shock wave, and the stronger the shock, the larger the 
entropy increase. A streamline passing through the strong, nearly normal portion 
of the curved shock near the centerline of the flow will experience a larger entropy 
increase than a neighboring streamline which passes through a weaker portion 
of the shock further away from the centerline. Hence, there are strong entropy 
gradients generated in the nose region; this ”entropy layer” flows downstream, 
and essentially wets the body for large distances from the nose, as shown in Fig. 
4.5. The boundary layer along the surface grows inside this entropy layer, and is 
affected by it. 

 

Fig. 4.5: Illustration of the entropy layer of a blunt-nosed slender body at 
hypersonic speeds 

 
 
 

4.2.1.3 Viscous Interaction 

Consider a boundary layer on a flat plate in a hypersonic flow, as sketched in 
Fig. 15.5. A high-velocity, hypersonic flow contains a large amount of kinetic 
energy; when this flow is slowed by viscous effects within the boundary layer, the 
lost kinetic energy is transformed (in part) into internal energy of the gas-this is 
called viscous dissipation. In turn, the temperature increases within the boundary 
layer; a typical temperature profile within the boundary layer is also sketched in 
Figure. 4.6. The characteristics of hypersonic boundary layers are dominated 
by such temperature increases. For example, the viscosity coefficient increases 
with temperature, and this by itself will make the boundary layer thicker. In 
addition, because the pressure p is constant in the normal direction through a 
boundary layer, the increase in temperature T results in a decrease in density 
ρ through the equation of state p = ρ/RT . In order to pass the required mass 
flow through the boundary layer at reduced density, the boundary layer thickness 
must be larger. Both of these phenomena combine to make hypersonic boundary 
layers grow more rapidly than at slower speeds. Indeed, the flat plate compressible 
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laminar boundary layer thickness δ grows essentially as 
 

2 
∞ 

δ ∝ √
Re

 

 
 

(4.16) 

 
 
 

 
 

Fig.   4.6: Schematic of a temperature profile in a hypersonic boundary layer 
 
 
 

4.2.1.4 High-Temperature Flows 

As discussed earlier, the kinetic energy of a high-speed, hypersonic flow is dissi- 
pated by the influence of friction within a boundary layer. The extreme viscous 
dissipation that occurs within hypersonic boundary layers can create very high 
temperatures-high enough to excite vibrational energy internally within molecules, 
and to cause dissociation and even ionization within the gas. If the surface of a 
hypersonic vehicle is protected by an ablative heat shield, the products of ablation 
are also present in the boundary layer, giving rise to complex hydrocarbon chem- 
ical reactions. On both accounts, we see that the surface of a hypersonic vehicle 
can be wetted by a chemically reacting boundary layer. 

 
 

 

Fig. 4.7: Illustration of a high-temperature shock layer on a blunt body moving 
at hypersonic speeds 

 
 
 
 

x 
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4.3 Hypersonic Shock wave Relations 

The shock wave relations in the hypersonic flows are given in the figure. 4.8. 
Although the shock wave relations for hypersonic and supersonic flows are same, 
the rather different wave relations seen in figure 4.8 for hypersonic flows is basically 

through the assumption that at very hypersonic sppeds, M1 → ∞ and γ → 1. 
 
 

Fig.  4.8: Hypersonic Shock wave relations 
 

 
For a completed detail about the derivation of the above relation refer to section 

15.3 in ”Modern compressible flow book”. 

 

4.4 Newtonian Theory 

Here, we will obtain a simple expression for the pressure distribution over the 
surface of a blunt body. In Propositions 34 and 35 of his Principia, Isaac Newton 
considered that the force of impact between a uniform stream of particles and 
a surface is obtained from the loss of momentum of the particles normal to the 
surface. For example, consider a stream of particles with velocity V∞, incident on 
a flat surface inclined at the angle θ with respect to the velocity, as shown in Fig. 
4.9a. Upon impact with the surface, Newton assumed that the normal momentum 
of the particles is transferred to the surface, whereas the tangential momentum 
is preserved. Hence, after collision with the surface, the particles move along the 
surface, as sketched in Fig. 4.9a. The change in normal velocity is simply V∞ sin θ. 
Now consider Fig. 4.9b. The mass flux of particles incident on a surface of area 
A is ρV∞A sin θ. 

Hence, the time rate of change of momentum of this mass flux, from Newton’s 
reasoning, is 

 

Mass flux  × velocity change (4.17) 

or 
(ρV∞A sin θ) (V∞ sin θ) = ρV 2 A sin2 θ (4.18) 

And in turn, from Newton’s second law, this time rate of change of momentum 
is equal to the force F on the surface: 

 

F = ρV 2 A sin2 θ (4.19) 
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Fig.  4.9: Schematic for Newtonian Impact theory 
 

 
In turn, the pressure is force per unit area, Which from the above equation is 

 

F 
= ρV 2 sin2 θ (4.20) 

A 

Newton assumed the stream of particles in Fig. 4.9b to be linear, i.e., he 
assumed that the individual particles do not interact with each other, and have 
no random motion. Since modern science recognizes that static pressure is due to 
the random motion of the particles, and since Eq. 4.20 considers only the linear, 
directed motion of the particles, the value of F/A in Eq. 4.20 must be interpreted 

as the pressure difference above static pressure, namely, F/A = p − p∞. Therefore, 
from Eq. 4.20, and recalling from the definition of the pressure coefficient, Cp = 
(p − p∞) 1 ρV 2 , we have 

2 ∞ 

p − p∞ = ρV 2 sin2 θ (4.21) 
 

p − p∞ 
1 ρV2 

= 2 sin2 θ (4.22) 

 
(4.23) 

 

Equation 4.23 is te newtonian ”sine-squared” law for preesure distribution on 
a surface inclined at an angle θ with respect to the freestream. 

 

4.5 A Local surface Inclination Method: Modified Newto- 

nian Theory 

Lineari eds upersonic theory leads to a simple relation for the surface pressure 
coefficient, namely Equ. 4.14, repeated here: 

2θ 
Cp = √  

2 
∞ 

(4.24) 

Note from Eq. 4.14 that Cp, depends only on θ, the local surface inclination 
angle defined by the angle between a line tangent to the surface and the free-stream 
direction. In this sense, Eq. 4.14 is an example of a ”local surface inclination 
method” for linearized supersonic flow. Question: Do any local surface inclination 
methods exist for hypersonic flow? The answer is yes. The oldest and most widely 

used of the hypersonic local surface inclination methods is newtonian theory. 
 

Cp = 2 sin2 θ 

M 
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recall the exact oblique shock relation for Cp from Figure. 4.8, 
 

4 
Cp = 

γ + 1 
sin2 β (4.25) 

 

Now consider the limit that as M , γ 1, we can see the above equation 
becomes 

Cp → 2 sin2 β (4.26) 

Let us go further.  Consider the exact oblique shock relation for ρ/ρ∞, given 
by 

ρ2 (γ + 1) M 2 sin2 β 
= 

ρ∞ (γ − 1) M 2 sin2 β + 2 
(4.27) 

 

The above equation, as M∞ → ∞, 

ρ2 γ + 1 

ρ∞ 
→ 

γ − 1 
(4.28) 

In the additional limits as γ → 1, we find 

ρ2 

ρ∞  
→ ∞ (4.29) 

Here the density behind the shock is infinitely large. In turn, mass flow con- 
siderations then dictate that the shock wave is coincident with the body surface. 

Now considering the θ − β − M relation, 

 
tan θ = 2 cot β 

  
M 2 sin2 β − 1 

M 2 (γ + cos 2β) + 2 

 
(4.30) 

 

as β is small and M1 is very large, the above reduces to 
 

 
 

Now as γ → 1 and M∞ → ∞, 

β γ + 1 
= 

θ 2 
(4.31) 

(4.32) 

i.e the shock wave lies on the body. In light of this result, the Equ. 4.26 can 
be written as 

Cp = 2 sin2 θ (4.33) 

In the newtonian model of fluid flow, the particles in the free stream impact 
only on the frontal area of the body; they cannot curl around the body and impact 
on the back surface.  Hence, for that portion of a body which is in the ”shadow” 
of the incident flow, such as the shaded region sketched in Fig. 4.10, no impact 
pressure is felt. Hence, over this shadow region it is consistent to assume that 
p = p∞ and therefore Cp = 0, as indicated in Fig. 4.10. 

 

θ = β 
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Fig.   4.10: Shadow region on the leeward side of a body, from newtonian theory. 
 

 

4.6 Lift and Drag in Hypersonic flow 

It is instructive to examine newtonian theory applied to a flat plate, as sketched 
in Fig. 4.11. Here, a two-dimensional flat plate with chord length c is at an angle 
of attack α to the free stream. Since we are not including friction, and because 
surface pressure always acts normal to the surface, the resultant aerodynamic force 
is perpendicular to the plate, i.e., in this case the normal force N is the resultant 
aerodynamic force. (For an infinitely thin flat plate, this is a general result which 
is not limited to newtonian theory, or even to hypersonic flow.) In turn, N is 
resolved into lift and drag, denoted by L and D, respectively, as shown in Fig. 
4.11. 

 
 

 

Fig.  4.11: Flat plate at angle of attack. Illustration of aerodynamic forces. 
 

 
According to newtonian theory, the pressure coefficient on the lower surface is 

 

Cpl = 2 sin2 α (4.34) 

and that on the upper surface, which is in the shadow region, is 
 

Cpα = 0 (4.35) 
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Defining the normal force coefficient as cn = N/q∞S, where S = (c)(l), we 
can readily calculate cn, by integrating the pressure coefficients over the lower and 
upper surfaces 

c  = 
1

 
n c 

c 

(Cpl 
0 

— Cpα ) dx (4.36) 

where x is the distance along the chord from the leading edge. Substituting Equs. 
4.34 and 4.35 in the above equation, we get 

c   = 
1   

2 sin2 α  c 
n c 

 
(4.37) 

 

cn = 2 sin2 α (4.38) 

From the geometry of Figure. 4.11, we can see that the lift and drag coefficients, 
defined as cl = L/q∞S and cd = D/q∞S, respectively, where S = (c)(l), are given 
by 

 
and 

cl = cn cos α (4.39) 

 
cd = cn sin α (4.40) 

Substituting, Equ. 4.38 into 4.39 and 4.40, we get 
 

cl = 2 sin2 α cos α (4.41) 
 

and  
cd = 2 sin3 α (4.42) 

Finally, the lift-to-drag ratio is given by 

L 
= cot α (4.43) 

D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

✂ 
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Chapter 5 

Flow through nozzles and 

  variable area ducts  
 

 

5.1 Quasi  one-dimensional  flow 

In the early chapters the one dimensional flow was strictly treated as constant 
area flow. In the present chapters, the restriction on constant area will be relaxed 
by allowing the streamtube area A to vary with distance x as shown in the fig 5.1. 
At the same time we will continue to assume that all flow properties are uniform 
across any given cross section of the flow, and hence are functions of x only (and 
time t if the flow is unsteady). Such a flow where A = A(x), p = p(x), ρ = ρ(x) 
and V = u = u(x) for steady flow is defined as Quasi-one-dimensional flow. 

 

Fig.  5.1: Quasi one-dimensional flow 
 
 
 

5.2 Governing Equations 

Algebraic equations for steady quasi-one-dimensional flow can be obtained by ap- 
plying the integral form of the conservation equations to the variable-area control 
volume sketched in Figure 5.2. 

 

5.2.1 Continuity Equation 

The continuity equation is repeated here, 

 ∂ 
ρV.dS = 

∂t 

 
ρdV (5.1) 

v S — 

✍ ✝ 
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Fig.  5.2: Finite control volume for quasi one-dimensional flow 
 
 

when integrated over the control volume in Figure 5.2, for steady flow, directly to 
 

ρ1u1A1 = ρ2u2A2 (5.2) 

 

5.2.2 Momentum Equation 

The integral form of the momentum equation is 
 

(ρV.dS) V  + 
∂ (ρV )

dV  = 
s ∂t 

ρfdV − 

✍
 

pdS (5.3) 

Applied to Figure 5.2, assuming steady flow and no body forces, it directly 
becomes 

A2 

p1A1 + ρ1u2A1 + 
A1 

pdA = p2A2 + ρ2u2A2 (5.4) 

This is the momentum equation for steady quasi-one-dimensional flow. Note that 
it is not strictly an algebraic equation because of the integral term which represents 
the pressure force on the sides of the control surface between locations 1 and 2. 

 

5.2.3 Energy  Equation 

The integral form of the energy equation is 

 
 
 

2
 

2 
  

q̇ρdV −

✍
 

pV.dS+ 
V 

 ∂ V  
ρ (f.V ) dV = ρ e + 

V ∂t 2 
dV + ρ 

S 

V  
e + 

2 
(5.5) 

V.dS 

Applied to Figure 5.2 and assuming steady adiabatic flow with no body forces, 
it directly yields 

 

— (−p1u1A1 + p2u2A2) = ρ1 

 
Rearranging, 

 
e1 + 

2 
  

   1 = p2u2A2 + ρ2u2A2 

2 

 
e2 + 

2 
  

   2 u2A2
 

2 
(5.6) 

 
p1u1A1 + ρ1u1A1 

u2
 

e1 +
 1 

2 

 
= p2u2A2 + ρ2u2A2 

u2
 

e2 +
 2 

2 

 
(5.7) 

 
 

s 

✍ 
V 

✂ 

✝ 
V S 

✝ 
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Dividing the above equation with 5.2, we get 
 

p1 u2 
+ e1 + 

ρ1 2 
= 

p2 

ρ2 
 u

2 

+ e2 + 
2 

 

(5.8) 

 

Noting that h = e + p/ρ, The above equation becomes 
 

u 
2 

h1 + 
2 

 u
2 

= h2 + 
2 

 

(5.9) 

This is the energy equation for steady adiabatic quasi-one-dimensional flow-it 
states that the total enthalpy is constant along the flow. 

 

5.3 Euler’s Equation for Quasi 1D flow 

Consider an infinitesimal control volume with a variable are cross section as shown 
in Figure 5.3. 

 

 
Fig.  5.3: Infinitesimal control volume 

 
 

The Quasi one dimensional continuity equation Equ. 5.2 can be written as 
 

ρuA = constant (5.10) 
 

Hence, 
d (ρuA) = 0 (5.11) 

To obtain a differential form of the momentum equation, apply Equ. 5.4 to the 
infinitesimal control volume sketched in Figure 5.3, where the length in the x 
direction is dx: 

pA + ρu2A + pdA = (p + dp) (A + dA) + (ρ + dρ) (u + du)2 (A + dA) (5.12) 

Dropping all second-order terms involving products of differentials, this be- 

comes 
Adp + Au2dρ + ρu2dA + 2ρuAdu = 0 (5.13) 

Expanding Equ. 5.11, and multiplying by u, 

ρu2dA + ρuAdu + Au2dρ = 0 (5.14) 
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Substracting the above equation from Equ. 5.13, we get 
 

(5.15) 

Equ. 5.15 is called the Euler’s equation. Finally, a differntial form of the 
energy equation is obtained from Equ. 5.9,which states that 

u2 

 
 

Hence, 

h + = const (5.16) 
2 

 
(5.17) 

 

5.4 Area Velocity Relation 

From the differential form of 1D continuity equation, Equ. 5.11 can be written as 
 

dρ du dA 
+ + 

ρ u A 
= 0 (5.18) 

To eliminate dρ/ρ from Equ. 5.18, consider the Euler’s equation Equ. 5.15 i.e: 
 

dp dp dρ 
= 

ρ dρ ρ 
= −udu (5.19) 

 

Recall that we are considering adiabatic, inviscid flow, i.e., there are no dissi- 
pative mechanisms such as friction, thermal conduction, or diffusion acting on the 
flow. Thus, the flow is isentropic. Hence, any change in pressure, dp, in the flow 
is accompanied by a corresponding isentropic change in density, dρ. Therefore, we 
can write 

dp ∂p 
= 

dρ ∂ρ 

 
= a2 (5.20) 

s 

Combing Equ. 5.19 and Equ. 5.20, we get 

a2 
dρ 

= udu (5.21) 
ρ 

or 
dρ udu 

 
  

u2du 
 

 

2 du 
 

 

ρ 
= − 

a2     
= − 

a2u 
= −M (5.22) 

u 

Substituting the above equation in Equ. 5.18, we get 

 
(5.23) 

 

Equation. 5.23 is an important relation. It is called the area-velocity rela- 
tion, and it tells us this information: 

1. For  M 0, which in the limit corresponds to incompressible flow, Equ. 
5.23 shows that Au = const. This is the familiar continuity equation for the 
incompressible flow. 

2. For 0 ≤ M < 1 (subsonic flow), an increase in velocity (positive du)is 
 

dp = −ρudu 

dA 

A =  M 2 − 1 
    du 

u 

dh + udu = 0 
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Fig.   5.4: Flow in coverging and diverging ducts 
 

 
associated with a decrease in area (negative dA), and vice versa. Therefore, 
the familiar result from incompressible flow that the velocity increases in a 
converging duct and decreases in a diverging duct still holds true for subsonic 
compressible flow (see top of Figure. 5.4) 

 

3. For M > 1 (supersonic flow), an increase in velocity is associated with an 
increase in area, and vice versa. Hence, we have a striking difference in 
comparison to subsonic flow. For supersonic flow, the velocity increases in 
a diverging duct and decreases in a converging duct (see bottom of Figure. 
5.4). 

 

4. For M = 1 (sonic flow), Equ.  5.23 yields dA/A = 0, which mathemati- 
cally corresponds to a minimum or maximum in the area distribution. The 
minimum in area is the only physically realistic solution, as described next. 

 
These results clearly show that for a gas to expand isentropically from subsonic 

to supersonic speeds, it must flow through a convergent-divergent duct (or stream- 
tube), as sketched at the top of Figure. 5.4. Moreover, at the minimum area that 
divides the convergent and divergent sections of the duct, we know from item 4 
above that the flow must be sonic. This minimum area is called a throat. Con- 
versely, for a gas to compress isentropically from supersonic to subsonic speeds, 
it must also flow through a convergent-divergent duct, with a throat where sonic 
flow occurs, as sketched at the bottom of Figure. 5.4. From this discussion, we 
recognize why rocket engines have large, bell-like nozzle shapes as sketched in 
Figure. 5.6-to expand the exhaust gases to high-velocity, supersonic speeds. 

 

5.5 Area-Mach Number relation for flow inside Nozzles 

Consider the duct shown in Figure. 5.7. 
At the throat, the flow is sonic. Hence, denoting conditions at sonic speed by 

an asterisk, we have, at the throat, M ∗ = 1 and u∗ = a∗. The area of the throat is 
A∗. At any other section of the duct, the local area, Mach number, and velocity 
are A, M and u, respectively. Apply Equ. 5.2 between these two locations: 

 

ρ∗u∗A∗ = ρuA (5.24) 
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Fig.   5.5: Flow in coverging and diverging ducts 
 
 
 
 

 

 

Fig.   5.6: Flow in coverging and diverging ducts 
 
 
 

 
Since u∗ = a∗, The above equation becomes 

A ρ∗ a∗ 
= 

  

ρ∗ ρ  a∗ 
= o 

 

 
(5.25) 

A∗ ρ u ρo ρ u 
 

where ρo is the stagnation density and is defined throughout the isentropic flow. 
Recalling the isentropic relation between stagnation density and staic density at 
any point in the flow, 

 
ρo 

= 1 + 
ρ 

 

γ − 1 
2 

 1/(γ−1) 

M 2 

 
(5.26) 
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Fig.   5.7: Flow in coverging and diverging ducts 
 
 

And apply the above equation to sonic condition where M = 1, we have 

ρ γ + 1 
  1/(γ−1) 

= 
  

 
(5.27) 

ρ∗ 2 

Also recalling the relation between the characteristic Mach number M ∗ and 
the freestream Mach number M , 

  u   2 

∗ = M ∗2 = 

 
γ+1 2 

2 γ−1 

 
(5.28) 

a 1 + 2   M 2 

 

Squaring Equ. 5.25 and substituting Equs. 5.27, 5.28 and 5.26, we get 

  
A 

 2 

 

 

 
ρ∗  

   2      
ρ

 

= o 
  

 2      
a∗  

   2 

 

 

 
(5.29) 

A∗ ρo 

 
 2 2/(γ−1)   

ρ u 

 2/(γ−1)  
   

1 + γ−1 M 2 
!
 

A 2 

A∗ γ + 1 
1 + 

γ − 1 
M 2

 

2 

2 
γ+1 2 

2 

(5.30) 

 
 

(5.31) 

 
Equation 5.31 is called the area-Mach number relation, and it contains a strik- 

ing result. Turned inside out, Equ. 5.31 tells us that M = f (A/A∗), i.e., the Mach 
number at any location in the duct is a function of the ratio of the local duct area 
to the sonic throat area.  As seen from Equ.  5.23, A must be greater than or at 

 

 
 A 

  2 

A∗ 
= 

  1 
 

   2  
 

 

M 2 γ + 1 
1 + 

γ − 1 
  (γ+1)/(γ−1) 

2 
M 2 
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least equal to A∗; the case where A < A∗ is physically not possible in an isentropic 
flow. Also, from Equ. 5.31 there are two values of M that correspond to a given 
A/A∗ > 1, a subsonic and a supersonic value. The solution of Equ. 5.31 is plotted 
in Figure 5.8, which clearly delineates the subsonic and supersonic branches. 

 
 

 

Fig.   5.8: Flow in coverging and diverging ducts 
 
 
 

5.6 Isentropic Flow  through  Convergent  Divergent  Noz- 

zles - Choked Flow, Under-expansion and Over-expansion 

Consider a given convergent-divergent nozzle, as sketched in Figure. 5.9. Assume 

that the area ratio ratio at the inlet A /A∗ is very large, A /A∗ → ∞, and that 
the inlet is fed with gas from a large reservoir at pressure and temperature po 

and To, respectively.Because of the large inlet area ratio,  M ≈ 0,  hence po  and 
To are essentially stagnation (or total values).   (The Mach number cannot be 
precisely zero in the reservoir or else there would be no mass flow through the 
nozzle. It is a finite value, but small enough to assume that it is essentially zero.). 
Furthermore, assume that the given convergent-divergent nozzle expands the flow 
isentropically to supersonic speeds at the exit. For the given nozzle, there is only 
one possible isentropic solution for supersonic flow, and Equ. 5.31 is the key to this 
solution. In the convergent portion of the nozzle, the subsonic flow is accelerated, 
with the subsonic value of M dictated by the local value of A/A∗ as given by 
the lower branch of Figure. 5.8. The consequent variation of Mach number with 
distance x along the nozzle is sketched in Figure. 5.9. At the throat, where the 
throat area A = A∗, M = 1. In the divergent portion of the nozzle, the flow 
expands supersonically, with the supersonic value of M dictated by the local value 
of A/A∗ as given by the upper branch of Figure. 5.8.  This variation of M with 
x in the divergent nozzle is also sketched in Figure. 5.9. Once the variation of 
Mach number through the nozzle is known, the variations of static temperature, 
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pressure, and density follow from Isentropic relations. The resulting variations of 
p and T are shown in Figure. 5.9, respectively. Note that the pressure, density, 
and temperature decrease continuously throughout the nozzle. Also note that the 
exit pressure, density, and temperature ratios, pe/po, ρe/ρo, and Te/To, depend 
only on the exit area ratio, A /A∗ via Equ. 5.31. 

 

Fig.   5.9: Flow in coverging and diverging ducts 
 
 

 

5.7 The Effect of Different Pressure Ratios Across a Given 

Nozzle 

If a convergent-divergent nozzle is simply placed on a table, and nothing else is 
done, obviously nothing is going to happen; the air is not going to start rushing 
through the nozzle of its own accord. To accelerate a gas, a pressure difference 
must be exerted, as clearly stated by Euler’s equation, Equ. 5.15. Therefore, in 
order to establish a flow through any duct, the exit pressure must be lower than 
the inlet pressure, i.e., pe/po < 1. Indeed, for completely shockfree isentropic 
supersonic flow to exist in the nozzle of Figure. 5.9a, the exit pressure ratio must 
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be precisely the value of pe/po shown in Figure. 5.9c. 

What happens when p,/p, is not the precise value as dictated by Fig. 5.9? 
In other words, what happens when the backpressure downstream of the nozzle 
exit is independently governed (say by exhausting into an infinite reservoir with 
controllable pressure)? Consider a convergent-divergent nozzle as sketched in Fig. 
5.10a. Assume that no flow exists in the nozzle, hence pe = po. Now assume that 
pe is minutely reduced below po. This small pressure difference will cause a small 
wind to blow through the duct at low subsonic speeds. The local Mach number will 
increase slightly through the convergent portion of the nozzle, reaching a maximum 
at the throat, as shown by curve 1 of Fig. 5.10b. This maximum will not be sonic; 
indeed it will be a low subsonic value. Keep in mind that the value A∗ defined 
earlier is the sonic throat area, i.e., that area where M = 1. In the case we are now 
considering, where M < 1 at the minimum-area section of the duct, the real throat 
area of the duct, A , is larger than A∗, which for completely subsonic flow takes 
on the character of a reference quantity different from the actual geometric throat 
area. Downstream of the throat, the subsonic flow encounters a diverging duct. 
and hence M decreases as shown in Fig. 5.10b. The corresponding variation of 
static pressure is given by curve 1 in Fig. 5.10c. Now assume pe is further reduced. 
This stronger pressure ratio between the inlet and exit will now accelerate the flow 
more, and the variations of subsonic Mach number and static pressure through 
the duct will be larger.  as indicated by curve 2 in Figs.  5.10b and c.  If pe is 
further reduced, there will be some value of pe at which the flow will just barely 
go sonic at the throat, as given by the curve 3 in Figs. 5.10b and c. In this case, 
A  = A∗. Note that all the cases sketched in Figs 5.10b and c are subsonic flows. 
Hence, for subsonic flow through the convergent-divergent nozzle shown in Fig. 
5.10a, there are an infinite number of isentropic solutions, where both pe/po and 
A/At are the controlling factors for the local flow properties at any given section. 
This is a direct contrast with the supersonic case discussed earlier, where only 
one isentropic solution exists for a given duct, and where AIA* becomes the only 
controlling factor for the local flow properties (relative to reservoir properties). 

For the cases shown in Figs. 5.10a, b, and c, the mass flow through the duct 
increases as p, decreases. This mass flow can be calculated by evaluating Eq. (5.1) 
at the throat, m = ρtAtut. When pe is reduced to pe3, where sonic flow is attained 
at the throat, then m = p∗A∗a∗. If p, is now reduced further, p, < p   , the Mach 
number at the throat cannot increase beyond M  = 1; this is dictated by Equ. 
5.31. Hence, the flow properties at the throat, and indeed throughout the entire 
subsonic section of the duct, become ”frozen” when pe < pe3, i.e., the subsonic 
flow becomes unaffected and the mass flow remains constant for pe < pe3. This 

condition, after sonic flow is attained at the throat, is called choked flow. No 
matter how low pe is made, after the flow becomes choked, the mass flow remains 
constant. This phenomenon is illustrated in Fig. 5.11. Note that sonic flow at the 
throat corresponds to a pressure ratio p∗/p = 0.528 for γ = 1.4; however, because 
of the divergent duct downstream of the throat, the value of pe3/po required to 
attain sonic flow at the throat is larger than 0.528, as shown in Figs. 5.10c and 
5.11. 

What happens in the duct when p, is reduced below pe3? In the convergent 
portion, as we stated, nothing happens. The flow properties remain as given by 
the subsonic portion of curve 3 in Fig. 5.10b and c. However, a lot happens in the 

 

o 
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Fig.  5.10: Subsonic Flow in a coverging-diverging Nozzle 
 
 
 
 
 
 
 
 
 
 
 
 
 



High Speed Aerodynamics (R18A2113) 88 Dr. G. Srinivasan 
88 105  

Chapter 5. Flow through nozzles and variable area ducts 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig.   5.11: Variation of mass flow with exit pressure; illustration of choked flow. 
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Fig.  5.12: Flow with a shock wave inside a convergent-divergent nozzle 
 
 
 

divergent portion of the duct. No isentropic solution is allowed in the divergent 
duct until pe is adequately reduced to the specified low value dictated by Fig. 5.9c. 
or values of exit pressure above this, but below pe3, a normal shock wave exists 
inside the divergent duct. This situation is sketched in Fig. 5.12. Let the exit 
pressure be given by pe4 . 

There is a region of supersonic flow ahead of the shock. Behind the shock, the 
flow is subsonic, hence the Mach number decreases towards the exit and the static 
pressure increases to pe at the exit. The location of the normal shock wave in the 
duct is determined by the requirement that the increase of static pressure across 
the wave plus that in the divergent portion of the subsonic flow behind the shock 
be just right to achieve pe4  at the exit.  As the exit pressure is reduced further, 
the normal shock wave will move downstream, closer to the nozzle exit. It will 
stand precisely at the exit when pe = pe5, where pe5 is the static pressure behind 
a normal shock at the design Mach number of the nozzle. This is illustrated in 
Figs. 5.13a, b, and c. In Fig. 5.13c, pe6 represents the proper isentropic value for 
the design exit Mach number, which exists immediately upstream of the normal 
shock wave standing at the exit. When the downstream backpressure pB is further 
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decreased such that pe6 < pB < pe5, the flow inside the nozzle is fully supersonic 
and isentropic, with the behavior the same as given earlier in Figs. 5.9a, b, c, and 
d. The increase to the backpressure takes place across an oblique shock attached 
to the nozzle exit, but outside the duct itself.  This is sketched  in Fig.  5.13d.  If 
the backpressure is further reduced below pe6, equilibration of the flow takes place 
across expansion waves outside the duct, as shown in Fig. 5.13e. 

When the situation in Fig. 5.13d exists, the nozzle is said to be overex- 
panded, because the pressure at the exit has expanded below the back pressure, 
pe6 < pB. Conversely, when the situation in Fig. 5.13e exists, the nozzle is said to 
be underexpanded, because the exit pressure is higher than the back pressure, 
pe6 > pB and hence the flow is capable of additional expansion after leaving the 
nozzle. 

 

5.8 Diffusers 

Difusers are the  devices  used  to  slow  the  flow  with  as  samall  a  loss 

of total pressure as possible Let us go through a small thought experiment. 
Assume that we want to design a supersonic wind tunnel with a test section Mach 
number of 3. Some immediate information about the nozzle is obtained from 
isentropic property tables; at M = 3, A /A∗ = 4.23 and p /p = 36.7. Assume 
the wind tunnel exhausts to the atmosphere. What value of total pressure po 
must be provided by the reservoir to drive the tunnel? There are several possible 
alternatives. The first is to simply exhaust the nozzle directly to the atmosphere, 
as sketched in Fig. 5.14. 

In order to avoid shock or expansion waves in the test region downstream of the 
exit, the exit pressure pe, must be equal to the surrounding atmospheric pressure, 
i.e., pe = 1 atm. Since po/pe = 36.7, the driving reservoir pressure for this case 
must be 36.7 atm. However, a second alternative is to exhaust the nozzle into a 
constant-area duct which serves as the test section, and to exhaust this duct into 
the atmosphere, as sketched in Fig.  5.15.  In this case,  because the testing area 
is inside the duct, shock waves from the duct exit will not affect the test section. 
Therefore, assume a normal shock stands at the duct exit. The static pressure 
behind the normal shock is p2, and because the flow is subsonic behind the shock, 
p2 = p∞ = 1 atm. In this case, the reservoir pressure po is obtained from 

 

p = 
po pe 

p 
 

 

1 = 367 1 = 3.55atm (5.32) 
∞ 

pe p2 10.33 

where p2/pe is the static pressure ratio across a normal shock at Mach 3, 
obtained from Normal shock table. Note that, by the simple addition of a constant- 
area duct with a normal shock at the end, the reservoir pressure required to drive 
the wind tunnel has markedly dropped from 36.7 to 3.55 atm. Now, as a third 
alternative, add a divergent duct behind the normal shock in Fig. 5.15 in order 
to slow the already subsonic flow to a lower velocity before exhausting to the 
atmosphere. This is sketched in Fig. 5.16. At the duct exit, the Mach number is 
a very low subsonic value, and for all practical purposes the local total and static 
pressure are the same. Moreover, assuming an isentropic flow in the divergent 
duct behind the shock, the total pressure at the duct exit is equal to the total 

pressure behind the normal shock.  Consequently, po2 ≈ p∞ = 1atm.  From the 
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Diffusers 
 

 
 
 
 
 
 
 
 
 

 

Fig. 5.13: Flow with shock and expansion waves at the exit of a convergent- 
divergent nozzle 
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Fig.  5.14: Nozzle exhausting directly to atmosphere 
 
 
 
 

 

Fig.  5.15: Nozzle with a normal shock at the exit, exhausting to the atmosphere 
 
 

 
normal shock tables, the Mach number behind the shock is M2 = 0.475, and the 
ratio of total to static pressure at this Mach number (from isentropic property 
tables) is po2/p2 = 1.17, Hence 

 

p  = 
po pe p2 

p
 

 

 

1 = 36.7 1 1 = 3.04atm (5.33) 

pe p2 ∞ po2 
10.33 1.17 

 
 

5.9 Wave Reflection from a free boundary 
 

The gas jet from a nozzle which exhausts into the atmosphere has a boundary 
surface which interfaces with the surrounding quiescent gas. The oblique shock 
waves shown in Fig. 5.13d and the expansion waves sketched in Fig. 5.13e must 
reflect from the jet boundary in such a fashion as to preserve the pressure at 
the boundary downstream of the nozzle exit. This jet boundary is not a solid 
surface as treated earlier; rather, it is a free boundary which can change in size 
and direction. Considering the overexpanded nozzle flow in Fig. 5.13d, the flow 
pattern downstream of the nozzle exit will appear as sketched in Fig. 5.17. The 
various reflected waves form a diamond-like pattern throughout the exhaust jet. 
Such a diamond wave pattern is visible in the exhaust from the free jet. 
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Supersonic Wind Tunnel 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.16: Nozzle with a normal-shock diffuser. The normal shock is slightly 
upstream of the divergent duct. 

 

 

 
 

Fig. 5.17: Schematic of the diamond wave pattern in the exhaust from a super- 
sonic nozzle 

 

 

5.10 Supersonic Wind Tunnel 

5.10.1 Parts of supersonic wind tunnel 
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Fig. 5.18: Schematic of a supersonic Wind tunnel 
 
 
 

 

Fig. 5.19: Norh with a conventional supersonic diffuser 
 

 
5.11 Numerical Problems 

1. Consider the isentropic subsonic-supersonic flow through a convergent-divergent 
nozzle. The reservoir pressure and temperature are 10 atm and 300 K, re- 
spectively. There are two locations in the nozzle where A/A∗ = 6: one in the 
convergent section and the other in the divergent section. At each location, 
calculate M. p, T, and u. 

Solution: In the convergent section, the flow is subsonic. From the front of 
Table A.1, for subsonic flow with A/A∗ = 6: 

 

 
 
 

Hence, 

, 
po 

p 

p 1 

  To  
= 1.006, 

T = 1.002 

p = 
p 

po = 
1.006 

× 10 = 9.94 atm 

 
T 1 

T = 
T 

To = 
1.002 

× 300 = 

a = 
√

γRT = 
√

1.4 × 287 × 299.4 = 346.8 m/s 
 

299.4 K 

M = 0.097 
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u = Ma = 0.097 × 346.8 = 

In the divergent section, the flow is supersonic. From the supersonic section 
of Table A.1, for A/A∗ = 6: 

 

po 
= 63.13, and 

To 

p T 
= 3.269 

 
p 1 

p = 
p 

po = 
63.13 

× 10 = 

T 1 
T = 

T 
To = 

3.269 
× 300 = 

a = 
√

γRT = 
√

1.4 × 287 × 91.77 = 192.0 m/s 

u = Ma = 3.368 × 192.0 = 

2. A supersonic wind tunnel is designed is designed to produce flow at Mach 
2.4. at standard atmospheric conditions. Calculate (i) the exit to throat 
area ratio of the nozzle (ii) Reservoir pressure and temperature. 

Solution: From Table A.1, for Me = 2.5: 
 

Ae 
= 2.637′ 

po 

A∗ pe 
= 17.09, 

To
 

Te 
= 2.25 

 

At standard sea level conditions, pe = 1 atm and Te = 288 K, Hence, 

p = 
po 

p 
pe 

= 17.09 × 1 = 

 

T = 
To 

T 
Te 

= 2.25 × 288 = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

648 K 

17.09 atm 

646.7 m/s 

91.77 K 

0.1584 atm 

33.6 m/s 

e 

e 
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